Zastosowanie neuronowych sieci komórkowych w nawigacji

Streszczenie:

W pracy zaprezentowano fragmenty systemu nawigacyjnego robota ruchomego wyposażonego w laserowy czujnik odległości. Przyjęto rastrowy model sceny. Przedstawiono zastosowanie sieci komórkowych w procesie planowania ścieżki i systemie samolokalizacji robota

Abstract:

A navigation system for an autonomous mobile robot is described in the paper. The scene is represented as a grid of cells. Cellular neural network is used for the path planning and robot's localization

1 Wstęp

Jednym z najważniejszych problemów w dziedzinie robotyki jest konstruowanie systemu planowania działań ruchomego robota, w szczególności planowania optymalnej i bezkolizyjnej trajektorii. System taki powinien umożliwić bezpieczne przeprowadzenie robota od zadanej pozycji do celu. Jeżeli przyjmiemy, że przeszkody oraz cel mogą się poruszać oraz przedmioty znajdujące się w otoczeniu robota mogą mieć dowolne kształty, to problem planowania ścieżki nie jest zadaniem trywialnym. Szczególnie trudnym zadaniem jest planowanie ścieżki w nieznanym otoczeniu. W poniższym opracowaniu zaproponowano system umożliwiający bezpieczne poruszanie się robota w nieznanym otoczeniu. Zakładamy, że znamy początkowe położenie robota i celu. Przedstawiony system składa się z następujących modułów: tworzenie i aktualizacja mapy otoczenia, planowanie na postawie utworzonej mapy bezkolizyjnej trajektorii, określenie położenia robota w globalnym układzie współrzędnych. Robot wyposażony jest w laserowy czujnik odległości. Na podstawie wskazań czujnika tworzona jest rastrowa mapa otoczenia. Sposób tworzenia i aktualizacji mapy przedstawiono w [4]. Aby robot mógł tworzyć globalną mapę otoczenia niezbędna jest znajomość jego położenia w globalnym układzie współrzędnych. Położenie to jest określane na podstawie znajomości położenia obiektów charakterystycznych ścian. W trakcie prowadzonych w ramach grantu KBN pt. "Badania metod i zastosowanie techniki laserowej do wspomagania nawigacji robotów mobilnych" badań testowano wiele metod planowania bezkolizyjnej ścieżki. Najbardziej efektywną okazała się metoda wykorzystująca sieć komórkową. W poniższym opracowaniu przedstawione zostaną podstawowe własności neuronowych sieci komórkowych i ich zastosowanie w planowaniu ścieżki i lokalizacji robota.

2 Sieci komórkowe

Sieci komórkowe są 2,3 lub n-wymiarowymi tablicami zawierającymi elementarne elementy dynamiczne nazywane komórkami lub neuronami, które oddziaływują na siebie jedynie lokalnie[1]. Komórki sieci połączone są jedynie z komórkami należącymi do ich r-sąsiedztwa.

R-sąsiedztwem N_r^{ij} neuronu C_{ij} jest zbiór neuronów spełniających warunek:

$$N_{r}^{ij} = \{C_{kl} : max(|k-i|, |l-j|) \le r \}$$
(1)

Schemat połączeń jest identyczny dla wszystkich, poza komórkami brzegowymi elementów sieci. Sygnałami sterującymi komórką C_{ij} są: sygnały wyjściowe y_{ki} neuronów należących do N_r^{ij} , sygnały wejściowe u_{kl} neuronów należących do N_r^{ij} oraz sygnał I zwany polaryzacją. Współczynniki wagowe sygnałów wyjściowych komórek należących do N_r^{ij} nazywane są współczynnikami sprzężenia zwrotnego i oznaczone są symbolem a_{ij}^{kl} . Współczynniki wagowe sygnałów wejściowych komórek należących do do N_r^{ij} nazywane są współczynnikami sterowania i oznaczone są przez b_{ij}^{kl} . Współczynniki wagowe określają stopień oddziaływania komórek należących do N_r^{ij} na neuron C_{ij} . Symbolem x_{ij} oznaczony jest stan komórki C_{ij} .

Dynamikę zmian w sieci komórkowej działającej w sposób dyskretny opisuje równanie:

$$x_{ij}(t+1) = \sum_{k=-r}^{r} \sum_{l=-r}^{r} a_{ij}^{i+k,j+l} y_{i+k,j+l}(t) + \sum_{k=-r}^{r} \sum_{l=-r}^{r} b_{ij}^{i+k,j+l} u_{i+k,j+l}(t)$$
(2)

$$y_{ij}(t+1) = f(x_{ij}(t))$$
 (3)

Ponieważ schemat połączeń jest identyczny dla wszystkich neuronów, więc dla dowolnych dwóch komórek C_{ij} i C_{kl} , wagi połączeń w obu kierunkach są identyczne tzn. zachodzi warunek:

$$a_{i+n,j+m}^{ij} = a_{k+n,j+m}^{kl} \qquad b_{i+n,j+m}^{ij} = b_{k+n,j+m}^{kl}$$
(4)

Współczynniki a_{ij}^{kl} i b_{ij}^{kl} zapamiętywane są w postaci macierzy A i B o wymiarach $(2r+1)\times(2r+1)$. Zbiór $\{A,B,I\}$ nosi nazwę szablonu sieci (ang. clonning template).

Wynikiem przetwarzania sygnałów w sieci jest zbiór wartości sygnałów wyjściowych w chwili osiągnięcia przez sieć stanu równowagi stabilnej. Równowaga stabilna zostaje osiągnięta, jeśli spełniony jest następujący warunek:

$$\lim_{t \to \infty} x_{ij}(t) = const \tag{5}$$

Stabilność sieci komórkowej zależy od funkcji f i postaci macierzy A i B.

3 Określanie położenia robota

Tworzenie globalnej mapy otoczenia jest możliwe jedynie wtedy, gdy znane jest dokładnie położenie robota w globalnym układzie współrzędnych. Większość obecnie stosowanych robotów posiada wbudowany sprzętowy system zliczeniowego określania położenia. Niestety informacja taka nie jest wystarczająca, jeśli robot realizuje bardzo długie ścieżki z dużą ilością manewrów typu gwałtowny skręt lub duża zmiana prędkości. Nowoczesny system powinien być wyposażony dodatkowy moduł, który na podstawie znajomości mapy globalnej otoczenia i położenia obserwowanych przez sensory przeszkód, koryguje dane dotyczące położenia robota. W systemach tych stosuje się najczęściej mechanizm filtru Kałmana. Zaczerpinęty z [5] algorytm działania modułu samolokaliżacji robota jest następujący:

Załóżmy, że znamy położenie robota w chwili k, opisane wektorem:

$$\mathbf{x}(k|k) = [x(k), y(k), \phi(k)]^T$$
(6)

AUTOMATION '97

oraz przesunięcie T(k) i obrót $\phi(k)$, które robot powinien wykonać w sytuacji idealnej opisane wektorem:

$$u(k) = [T(k), \phi(k)] \tag{7}$$

Położenie robota w chwili k+1 można opisać równaniem:

$$\mathbf{x}(k+1|k+1) = f(\mathbf{x}(k), u(k)) + v(k)$$
(8)

gdzie v(k) - jest szumem powstałym w wyniku niedokładności systemu sterowania.

$$f(\mathbf{x}(k), u(k)) = \begin{bmatrix} x(k) + T(k) \cdot \cos(\phi(k)) \\ y(k) + T(k) \cdot \sin(\phi(k)) \\ \phi(k) + \delta\phi(k) \end{bmatrix}$$
(9)

Należy określić wielkość szumu v(k). W chwili początkowej, na podstawie analizy wskazań lasera, robot ocenia położenie punktów charakterystycznych - ścian.

W chwili k+1 na podstawie znajomości położenia punktów charakterystycznych w chwili k i wektora u(k) oblicza się odległość $z'_j(k+1)$ od tych obiektów charakterystycznych zgodnie ze wzorem:

$$z'_{j}(k+1) = h_{st}(\mathbf{x}(k+1|k), p_{t}) + w_{j}(k)$$
(10)

$$\mathbf{x}(k+1|k) = [x(k) + T(k) \cdot \cos(\phi(k)), y(k) + T(k) \cdot \sin(\phi(k)), \phi(k) + \delta\phi(k)]$$
(11)

gdzie: $w_i(k)$ - jest szumem powstałym w wyniku niedokładnych wskazań sensorów, a p_i jest wektorem opisującym obiekt charakterystyczny.

Dla ściany $p_i = (x_1, y_1, x_2, y_2)$, gdzie (x_1, y_1) - początek odcinka, a (x_2, y_2) - koniec odcinka. Następnie obliczana jest wielkość $\nu_{ii}(k+1)$

$$\nu_{ij}(k+1) = [z_j(k+1) - z'_i(k+1)] \tag{12}$$

i macierz S_{ij}

$$S_{ij} = \nabla h_i P(k+1|k) \nabla h_i^T + R_i(k+1).$$
⁽¹³⁾

P(k + 1|k) - jest macierzą wariancji, określającą niepewność położenia robota w chwili k + 1, uwzględniając informacje zebrane w k poprzednich krokach. Macierz $R_i(k + 1)$ określa niepewność położenia obserwowanych obiektów charakterystycznych.

W następnym kroku obliczana jest macierz W:

$$W(k+1) = P(k+1|k) \bigtriangledown h^T S^{-1}(k+1)$$
(14)

Nową poprawioną pozycję robota określa wzór:

$$\mathbf{x}(k+1|k+1) = \mathbf{x}(k+1|k) + W(k+1) \cdot \nu(k+1)$$
(15)

oraz związana z nowym położeniem wariancja określona jest wzorem:

$$P(k+1|k+1) = P(k+1|k) - W(k+1) \cdot S(k+1) \cdot W^{T}(k+1)$$
(16)

Rysunek 1: Wartości wyjściowe sieci dla zadanej sceny

Ze względu na dużą szybkość działania lasera głównym zadaniem jest znalezienie efektywnego algorytmu wykrywania obiektów charakterystycznych. W poniższym opracowaniu proponuje się zastosowanie jednowymiarowej sieci komórkowej do wykrywania fragmentów ścian. Odczyty lasera zapamiętywane są w postaci tablicy, której i-ty element przechowuje odległość do przeszkody przy kącie skanowania $\phi_{rob} + i * \delta \alpha$, gdzie ϕ_{rob} jest orientacją robota w globalnym układzie współrzędnych, a $\delta \alpha$ jest jednostkowym przyrostem kąta skanowania.

Sygnał wejściowy do sieci $u_i = \frac{A}{R_i}$, gdzie A jest pewną stałą, a R_i jest odległością wskazywaną przez laserowy czujnik odległości przy kącie skanowania $\phi_{rob} + i * \delta \alpha$. Przyjęto sąsiedztwo pierwszego stopnia. Macierz współczynników sprzężenia jest macierzą zerową, macierz sterowania B ma następującą postać:

$$B = [-1, 2c, -1] \qquad c = \cos(\delta\alpha) \tag{17}$$

Wartość sygnału wyjściowego jest następująca:

$$y_{i} = \begin{cases} 1 & gdy \quad |\sum b_{j} \cdot u_{j}| \leq \epsilon \\ 0 & gdy \quad |\sum b_{j} \cdot u_{j}| > \epsilon \end{cases}$$
(18)

Na rysunku 1 pokazano wartości wyjściowe neuronowej sieci komórkowej dla zadanej sceny. Jeśli istnieje ciąg $\{i,i+1,..,i+j\}$ taki, że $u_{i+1}=1,u_{i+2}=1,...,u_{i+j-1}=1$ to ciąg odczytów $\{R_i,...,R_{i+j}\}$ wyznacza współliniowy ciąg punktów leżących zawierających się w odcinku

Rysunek 2: Niepewność położenia robota dla różnych obiektów charakterystycznych

o początku w punkcie (x_1,y_1) i końcu w punkcie (x_2,y_2) , gdzie

$$\begin{aligned} x_1 &= x_{rob} + R_i * \cos(\phi_{rob} + i \cdot \delta \alpha) \\ y_1 &= y_{rob} + R_i * \sin(\phi_{rob} + i \cdot \delta \alpha) \\ x_2 &= x_{rob} + R_{i+j} * \cos(\phi_{rob} + (i+j) \cdot \delta \alpha) \\ y_2 &= y_{rob} + R_{i+j} * \sin(\phi_{rob} + (i+j) \cdot \delta \alpha) \end{aligned}$$
(19)

Na rysunku 2 pokazano przykładową scenę. Kolem zaznaczono położenie robota, a elipsą niepewność jego położenia określoną przy pomocy filtru Kalmana. Strzałką zaznaczono kierunek w którym porusza się robot.

Jeśli położenie robota jest korygowane względem tylko jednego punktu charakterystycznego (ściany) to niepewność jego położenia jest większa niż w przypadku uwzględnienia kilku punktów charakterystycznych. Stopień niepewności zależy nie tylko od ilości punktów charakterystycznych, ale także od ich położenia wględem robota.

4 Planowanie bezkolizyjnej ścieżki

Globalna metoda planowania ścieżki, proponowana w poniższej pracy, jest neuronalną realizacją i modyfikacją metody zaproponowanej przez Steels'a [3]. Architektura sieci przedstawiona jest na rysunku 3. Sieć składa się z dwóch warstw, z których każda jest siecią komórkową.

Rysunek 3: Architektura dyfuzyjnej sieci neuronowej

Każdej klatce mapy globalnej odpowiada para neuronów - jeden w pierwszej i jeden w drugiej warstwie. W sieciach komórkowych pierwszej i drugiej warstwy przyjęto sąsiedztwo stopnia jeden. Jeśli klatki R_{ij} i R_{kl} się stykają, to odpowiadające im neurony pierwszej warstwy C_{ij}^1 i C_{kl}^1 oraz neurony C_{ij}^2 i C_{kl}^2 drugiej warstwy są ze sobą w relacji r-sąsiedztwa. Sąsiedztwo to może być dowolnie rozszerzane, dzięki czemu wygenerowana ścieżka jest bardziej gładka i optymalna, ale w przypadku symulacji sieci neuronowej na komputerze działającym sekwencyjnie algorytm staje się bardziej skomplikowany obliczeniowo.

4.1 Warstwa wejściowa

Każda z klatek mapy wysyła sygnał wyjściowy u_{ij} o wartości 0, jeśli odpowiednia klatka jest zajęta przez przeszkodę i wartości 1 w przeciwnym przypadku. Przyjęto także, że

wartość sygnału u_{ij} dla wszystkich komórek brzegowych jest równą zero. W systemie założono, że wymiary robota mogą być większe niż wymiar klatki. Aby wygenerować bezkolizyjną trajektorię należy wymiary przeszkód rozszerzyć o połowę wymiarų robota. Temu celowi służy wprowadzenie funkcji *S*, która określa stan neuronu C_{ij} nie tylko w zależności od wartości sygnału u_{ij} , ale także od wartości sygnałów pochodzących z klatek sąsiednich. Wymiar sąsiedztwa zależy od wymiaru robota w klatkach np. jeśli rzut robota na płaszczyznę XY zawiera się w kwadracie o wymiarach 3×3 klatki, to wymiar sąsiedztwa wynosi 1. Przyjmujemy, że wszystkie elementy macierzy *B* mają wartość 1. Funkcja S ma następującą postać:

$$S(x) = \begin{cases} 0 \quad \sum_{kl \in N_{ij}} b_{kl}^{ij} \cdot u_{kl} < n \\ 1 \quad \sum_{kl \in N_{ij}} b_{kl}^{ij} \cdot u_{kl} \ge n \end{cases}$$
(20)

gdzie n jest liczbą elementów macierzy B.

4.2 Opis pierwszej warstwy

Pierwsza warstwa jest siecią komórkową działającą w czasie dyskretnym. Postać macierzy A przedstawiona jest na rysunku 4. Wartości α i β są liczbami z predziału (0,1) i odzwierciedlają odległości między odpowiednimi klatkami. Przyjęto, że α , $\beta < 1$ i $\alpha < \beta$.

β	α	β
α	1	α
β	α	β

Rysunek 4: Macierz sprzężeń zwrotnych

Działanie pierwszej warstwy składa się z następujących etapów:

1. Inicjalizacja wartości stanów neuron reprezentujący cel jest wyróżniony w pierwszej warstwie, neuron ten jest źródłem pobudzenia. Początkowe wartości stanów neuronów pierwszej warstwy w chwili początkowej są następujące:

$$x_{ij}(0) = \begin{cases} F >> 1 & gdy \ klatka \ ij \ reprezentuje \ cel \\ 0 & w \ przeciwnym \ przypadku \end{cases}$$
(21)

 Propagacja sygnałów wewnątrz sieci - neuron pobudzony w chwili czasowej t pobudza neurony sąsiednie. Zmiany stanów komórek sieci w kolejnych chwilach czasowych określone są równaniami:

$$x_{ij}(t+1) = S(\sum_{kl \in N_{ij}^{ij}} (b_{ij}^{kl} \cdot u_{kl}(t))) \cdot max_{kl \in N_{ij}^{ij}} (a_{ij}^{kl} \cdot y_{kl}(t))$$
(22)

$$y_{ij}(t+1) = x_{ij}(t)$$
 (23)

Powyższe równania nie są klasycznymi równaniami dynamiki sieci komórkowej, ale proces poszukiwania maksymalnego sygnałów wejściowych występuje w wielu rodzajach sieci, np. ART.

Propagacja sygnałów w pierwszej warstwie zachodzi aż do momentu osiągnięcia przez sieć stanu równowagi, tzn. aż do chwili \overline{t} takiej, że:

$$\forall_{t>\bar{t}} |x_{ij}(t) - x_{ij}(t+1)| \le \epsilon \tag{24}$$

AUTOMATION '97

4.3 Generowanie ścieżki

Struktura drugiej warstwy jest identyczna jak pierwszej warstwy. Wszystkie wagi połączeń między neuronami mają wartość jeden. Sygnał pochodzący z warstwy pierwszej jest sygnałem wejściowym do warstwy drugiej i automatycznie uaktywnia odpowiedni neuron. W warstwie drugiej wyróżniony jest neuron odpowiadający pozycji robota. Jeśli neuron ten zostanie uaktywniony, to następuje sekwencyjny proces generowania ścieżki:

- Neuron reprezentujący pozycję robota jest wybierany jako fragment ścieżki.
- Jeśli neuron C_{ij}^2 reprezentuje fragment generowanej drogi, to kolejna pozycja robota wyznaczona jest przez neuron C_{kl}^2 , który spełnia następujący warunek:

$$x_{kl}^2 = max_{kl\in N_r^{ij}} x_{ij}^2 \tag{25}$$

• Proces generowania ścieżki jest zakończony, gdy kolejna pozycja robota wyznaczona . będzie przez neuron spełniający warunek:

$$x_{kl}^2 = max_{ij\in N_r^{kl}} x_{kl}^2$$
 (26)

tzn. w sąsiedztwie neuronu C_{kl}^2 nie istnieje neuron o większym od niego pobudzeniu. Neuron ten reprezentuje pozycję celu.

Ciąg klatek odpowiadających wybranym neuronom drugiej warstwy wyznacza bezkolizyjną ścieżkę.

Rysunek 6: Planowanie ścieżki, gdy cel otoczony jest przez przeszkody Na rysunkach 5 - 6 przedstawiono wyniki symulacji komputerowej modułu planowania ścieżki i tworzenia mapy otoczenia. Założono, że wymiar klatki wynosi 10 cm, a robot

AUTOMATION '97

zajmuje obszar o wymiarach 3×3 klatki. Przedstawiono wyniki planowania w dwóch sytuacjach, w których klasyczne metody są nieskuteczne: występowania ślepej uliczki, lub gdy cel otoczony jest przez przeszkody. Szare kwadraty reprezentują rzęczywiste przeszkody, czarne kwadraty reprezentują klatki uznane za zajęte przez przeszkody, a białe klatki są wolne lub nieznane. Mapa jest uaktuałniana co 10cm (jedna klatka). Cel oznaczono literą G, a położenie robota literą R.

Na rysunkach 5a-5c przedstawiona sytuację, ślepej uliczki, wyraźnie widać, że po rozpoznaniu przeszkody robot automatycznie się wycofuje i planuje nową - prawidłową drogę do celu.

Opisana metoda dyfuzyjna ma następujące zalety:

- Neuronalna realizacja metody umożliwia wielorównoległe przeszukiwanie przestrzeni rozwiązań.
- Jeśli zostanie stworzony moduł umożliwiający w sposób ciągły odbieranie i przetwarzanie sygnałów z sensorów, to algorytm może być stosowany jako metoda reaktywnego sterowania.
- Umożliwia automatyczne przeplanowanie ścieżki w przypadku ślepej uliczki.
- Nie istnieją problemy związane z występowaniem minimów lokalnych.
- Umożliwia automatyczne wykrywanie sytuacji, w której cel lub robot otoczony jest przez przeszkody i wolna droga nie istnieje.

Cytowana literatura

- Chua O., Young L.: "Cellular Neural Network Theory", IEEE Transaction on Circuits and Systems 35, str. 1257-1272, October 1988.
- [2] Kacprzyk T., Ślot K.: "Sieci neuronowe komórkowe", Wydawnictwo Naukowe PWN, Warszawa-Łódź, 1995.
- [3] Steels, L.: "Steps towards common sense", Proceedings ECAI-88, str. 49-54, Munchen 1988.
- [4] Racz J, Siemiątkowska B, Sawwa R., Petz M.:"2D Map Building Based on LRF Readouts", Proceedings MMAR-96, September, 1996, Międzyzdroje, Poland.
- [5] Leonard J.J., Durrant-Whyte H. F.: "Direct Sonar Sensing for Mobile Robot Navigation", Kluwer Academic Publishers, 1992.