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AUTOMATED TUNING OF A NEURAL NETWORK 
FOR LOCALIZATION OF A MOBILE ROBOT 

Abstract: hi this paper we present a method of automated tuning of high 
level parameters of neural networks. It uses memory-based learning prin-
ciples, follows ideas of experimental design and stochastic optimization, 
and uses an innovative approach to resampling called stochastic valida-
tion. Potential usefulness of the proposed approach is illustrated with the 
Fuzzy-A RTMAP neural network application to learning a qualitative posi-
tioning of an indoor mobile robot equipped with ultrasonic range sensors. 
Automatically selected setpoints allow the system to reach a comparable 
performance to that achieved by human experts in E-D parameter optimi-
zation cases, and lead to a better performance in higher dimensions. 

1 INTRODUCTION 

One of the main difficulties in practical applications of neural networks to real world pro-
blems is the necessity of assigning proper values to neural network's high level parameters 
(such as a number of hidden layers and hidden units, a learning speed, momentum factors, 
categorization resolution, etc.). The eventual design effort depends on the particular task 
setup and on the characteristics of a selected network type, but anyway it usually takes 
an expert a significant tweaking time to achieve a satisfactory performance of a neural 
system. New optimization techniques emerging from experimental design [2], stochastic 
approximation [5], and memory-based learning [8], offer a very attractive way of using 
both the computation time and the empirical knowledge about the system's performance 
so far to quickly and purposefully spot interesting regions of the decision space. 
In this paper we describe a concept and some results obtained with memory-based sto-
chastic optimization applied to experimentally select useful and statistically valid settings 
for high level parameters of the Fuzzy-ARTMAP neural network trained to predict a posi-
tion of a mobile robot equipped with ultrasonic range sensors. The task of the presented 
method is to automatically spot reasonable values of the neural network's parameters 
with as small computational effort as possible. It is designed to select the experiments 
purposively and to perform the most informative ones. It also takes care on making an 
efficient use of the experimental data collected so far. To do so it builds probabilistic 
models of relationships between the values of the high level parameters and the network's 
performance. Those models are then used to predict optimal settings and to suggest 
further experiments. 

The proposed method of validation and tuning may be actually applied to any kind of 
a supervised learning algorithm, which is controlled with some continuous numeric high 
level parameters. In case of discrete parameters a technique of racing would be more 
suitable [6]. 
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Figure 1: Localization task setup, data scatter and position sectors. 

2 NEURAL NETWORK FOR A MOBILE ROBOT LOCALIZATION 

The particular robotic task we consider in this paper is a mobile robot qualitative locali-
zation in a setup described in detail in [9]. A robotic vehicle (Robosoft Robuter), equipped 

with ultrasonic range sensors, is placed somewhere in proximity of a selected object of 
the scene (a doorway in particular). The task for a trained neural network is to predict 

a relative position of the robot, given immediate readouts of 9 ultrasonic range sensors, 
assuming that the robot is placed somewhere in a doorway neighborhood region. 

The data for training has been collected on a real vehicle and covers a rectangular area 

1.5 meter width and 1 meter deep, located symmetrically along the doorway axis, 1 

meter away from the doorway center (Fig. 1). That region has been preclassified into 28 
non-overlaping rectangular sectors of a cartesian 2-D position. The data collection has a 
form of a set of input—output pairs which associate sensory readouts with location sectors. 

An essential evaluation criteria for a neural network in this setup is prediction accuracy. 
To assess it we perform validation cycles. At each cycle the network is trained in a 
supervised mode using a randomly selected part of the available data. An ideal predictor 
would give correct position estimates when supplied with the remaining data which has 
not been seen by the system during training. Prediction accuracy is thus measured as a 
cummulative misclassification error calculated over the testing part of the data set. The 
accuracy depends of course on the relevance of the collected data, on the amount of noise 
in it, and on the way it is being split into training and testing parts. Otherwise, the 
prediction accuracy depends mainly on the particular choice of the high level parameter 
settings, which control a behavior of the machine learning algorithm in use. 

In the research described in this paper we additionally constrain the size of memory 
occupied by a neural network knowledge representation. It has an obvious practical justi-
fication and extends the original work [9]. The objective function reflects the prediction 
accuracy and the network's representation size together: 

f (e, M) = tc • (1—c) ł (1 — tc) • [1 — (M/ Mynar)2] 

where O G < 1 is a Misclassification error obtained during a single validation cycle over a 
population of total 5177 data samples, M is a size of memory taken by the neural network 
representation, M„,,,,x is a memory limit (65536 bytes in the presented experiments), and 

(1) 
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finally the weighting factor sc equals 0.95. Note that f is a function of two random 
variables (e and M), and we expect it to reveal a certain variance due to a stochastic way 
of splitting the original data set into the training and testing parts. The optimization task 
is to determine which region of the high level parameters space has the largest expected 
value of the objective function, provided that the expectation is confident enough. 

The neural network of our choice, Fuzzy-ARTMAP, has a modular architecture composed 
of two Fuzzy-ART networks interconnected with an associative memory. It is capable of a 
stable supervised learning of multidimensional mappings in response to arbitrary sequen-
ces of real valued training vectors. The component Fuzzy-ART modules are self-organizing 
incremental categorization engines. During learning they create efficient discrete repre-
sentations of input data populations. Fuzzy-ART self-organization provides the whole 
system with an useful feature of completely autonomous topology development. One 
does not face difficult choices of numbers of hidden layers and hidden nodes to obtain 
the best prediction accuracy, when dealing with Adaptive Resonance Theory systems. 
However, there remains a set of numeric parameters in the model. Their particular va-
lues determine, given the training data, the system's eventual topology and performance. 
So, a proper selection of these values is a key design issue in the Fuzzy-ARTMAP ap-
plications. Interestingly, despite the established popularity of the ART networks and an 
increasing number of their successful uses (also in robotics [1]), there are no complete 
design principles developed so far. 

Due to the space limits we have to skip a detailed Fuzzy-ARTMAP operation description 
here. An interested reader may refer to the fundamental literature [3]. For this paper 
purposes it is enough to say that the complete Fuzzy-ARTMAP may be controlled by as 
many as 13 numeric parameters, but such a level of sophistication is rarely considered 
in practice. In the experimental setup we discuss in this paper we have an access to up 
to 8 high level parameters, namely to the vigilance factors of the input network (ea in 
a training phase and in a recognition phase) and of the map field (o" and e:b )„ to 
the input network choice parameters (a°, „4.), and to the learning speeds (fla and scal. 
For comparison reasons in some of the experiments we restrict the number of the tuned 
parameters even further (down to tw6: ę, pa). 
3 MEMORY-BASED STOCHASTIC VALIDATION AND TUNING 

Performance of the Fuzzy-ARTMAP system is deterministic given the data. That is, it 
would reveal always the same results over a given testing set, after being taught using a 
given training set and the same training samples sequence, with the same high level pa-
rameters setup. Unfortunately, as in the case of any other supervised learning algorithm, 
validation based on a single fold of the available data (so called train-and-test or hold-out 
method) gives an inexpensive, but usually a high variance estimate of the performance. 
A more relevant approximation can be obtained with cross-validation, but that technique 
requires several repetitive train-and-test cycles, and thus it is relatively expensive. The 
larger the factor K of the K-fold cross-validation, the better the learner's performance 
estimate, and the more train-and-test cycles need to be executed at a single setpoint of 
the high level parameters space. We argue that for most cases it is computationally more 
efficient to perform only a few folds of the K-fold cross-validation at a given point, and 
use the remaining time for sampling among some other places of the domain. 

If for each experiment the available data was randomly split into the training and the 
testing subsets of the sizes defined by the constant folding factor K, we cannot expect a 
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Figure 2: Memory-based learning by locally-weighted linear regression for a case of one-di-
mensional input (horizontal axis) and one-dimensional output (vertical axis). Black dots 
correspond to the experimental data, thick line is a locally weighted linear regression 
model of the observed process, thin lines depict model's confidence intervals. Kernel width 
determines how local is the regression, je. how important are the datapoints located far 
from the given input query point vs. those located nearby, in making the prediction. 

deterministic behavior of the learner anymore. That is, the learner's performance estima-
tes calculated at a selected setpoint of its high level parameters will, except very special 
cases, be different for different pairs of training and testing sets drawn randomly from the 
same source data. These estimates however can still be compared against each other as 
noisy values computed upon random folds of the same data population. Moreover, if we 
were sampling at a selected setpoint of the high level parameters for a sufficient number 
of times, we would eventually obtain a confident estimate of the system performance at 
that point, which would be at least as relevant as the one computed with the respective 
deterministic K-fold cross-validation. 

With the above described resampling scheme, which we call K -fold stochastic validation, 
we trade a slight increase of variance of the learning algorithm performance evaluations 
for substantial savings in computational effort. Stochastic validation turns an originally 
deterministic behavior of a machine learning algorithm into a random process suitable for 
the memory-based optimization. 

Memory based stochastic optimization [7] is a new technique that combines memory-based 
learning [8] with experimental design methods [2]. It differs from a conventional numeri-
cal optimization because it accepts noisy samples, operates on non-linear or just locally 
linear approximations of the objective function surface, makes use of uncertainty of the 
maintained objective function model, and attempts to perform a relatively small number 
of deliberatively selected optimization steps. These features make memory-based stocha-
stic optimization exceptionally suitable for a class of tasks in which gathering empirical 
data about the optimized process outcomes is costly, risky, time consuming, and if the 
gathered data is noisy. 

Memory-based learning builds a locally weighted regression model of the observed process 
input-output behavior, based upon all observations made so far. If the observations are 
noisy, the local regression fit provides a filtered estimate of the expected output value. 
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A query at a selected point of the model reveals not only the output expectation, but also Bayesian estimates of its confidence (Fig. 2). Experimental design methods use that information to suggest input space locations to try, in order to maximize the expected output and/or enrich the model. Results of the execution of the experiments are then used for the model update. 

If we think of a memory-based locally weighted regression model of the process outputs as a surface in the process input space, then - given requested confidence - we can also think of surfaces representing upper and lower limits of the output confidence intervals. IEMAX algorithm [7] tries to spot a maximum of the upper confidence limit, which then becomes the next experiment suggestion. Usually outcomes of the experiments suggested in that way are lower than the predictions given by the upper confidence limits. But, as a result of updating the memory-based regression model with the new outcome, the upper confidence interval surface is being nailed down towards the actual outcome, and the performance model surface is being reshaped to better represent the actual learner's 
performance. Then IEMAX suggests a new experiment at the location of a maximum of the updated upper confidence interval and continues aggresive exploration throughout the entire search space in hope of finding the global optimum. 
Another experimental design method, called OPTEX [7], makes its suggestions at the location of the largest expected improvement over the current model's maximum. i The 
improvement expectation at a given input query point is estimated by the way of integra-tion of the upper tail of a conditional probability density function of the model prediction given the query. The integration begins from the pdf value related to the current model's 
maximum. OPTEX has a potential of finding global optima in a sensible manner, but behaves slightly less spontaneously than IEMAX and needs more computation. 
The last of the search heuristics described in this paper, called PMAX, does not have a direct application to stochastic optimization. Its suggestions correspond to the maxima of the memory-based model of the learner's performance. PMAX's recommendations can be seen as predictions of the best performance spotted so far, and we use them to evaluate 
progress during optimization with IEMAX or OPTEX. 
By using IEMAX or OPTEX over locally weighted linear regression models of the learner's 
performance, estimated with stochastic validation, it is possible to quickly determine 
promising regions of the high level parameters space. During tuning, the amount of time spent while evaluating regions of low expectations is being reduced. The experiments are being performed more often along promising areas of the space, providing us in return with more confident and more accurate evaluations right there, where they are needed. 

4 EXPERIMENTS 

A purpose of the presented experiments was to verify the adequacy of the memory-based 
stochastic optimization for tuning high level parameters of a learning algorithm, and to 
figure out possible profits from its application to a realistic robotic task. 
First of all we would like to see whether the method is capable of spotting useful setups in an acceptable number of validation steps. In order to make the heuristics comprehen-
sible we constrain the optimization task to a two-dimensional case by choosing e and fl" as decision variables and setting the remaining six parameters to reasonable values 
suggested by a human expert (a° = a: = 0.01, gab = 61:b = fiab = 1, e: = 0.9e). It is 
sensible to set the number of experimental steps to 200, which is equivalent to 40 complete 
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Figure 3: Evolution of regression models obtained with OPTEX: contours of equal objec-

tive function values after 20, 100 and 180 validation steps (2-D case) plotted in coordi-

nates e (horizontal axis) and Pa (vertical). Black dots depict locations of the evaluated 

Fuzzy-ARTMAP setups. Contours obtained with IEMAX were similar. 

5-fold cross-validation tests. If we chose full five-fold cross-validation, we would gather 

information at merely 40 points of the decision space, whereas by taking into account 

only one training-testing data fold per point we would be able to visit 200 points with 

a similar computing effort. With 200 noisy samples we expect to obtain decent regres-

sion models of the learner's performance, to spot promising regions Of the decision space, 

and to achieve a reasonable confidence about the predicted optima. At each validation 

step the network executes 3 epochs of training, then memory usage is calculated, and the 

predictive accuracy is determined with use of a testing data set. 

In Fig. 3 a development of the regression models is shown. Both IEMAX and OPTEX 

in just 20 steps begin to discover the most important feature of the modeled system, 

ie. a steep slope at high values of pa caused by the imposed memory usage limit. In 

about 100 steps both methods decided to pay their attention to the region along that 

edge, correctly expecting to spot a maximum of the objective function over there. After 

approximately 120 steps IEMAX became significantly confident about predicted maxima. 

The expected value of the optimum was however surprisingly low (0.8070 at p' = 0.8300 

and fi° = 0.8540, with the 95-percentile confidence limits 0.7938 (low) and 0.8175 (high)). 

5-fold cross-validation returned a larger value of the objective estimate at the same point 

(0.8240, ay. pred. error 17.56%, ay. memory usage 45523 bytes). We observed a smaller 

discrepancy with OPTEX though, which in about 170 validation steps began to stabilize 

at p' = 0.8450 and pa = 0.7750, predicting objective value of 0.8160 with a reasonable 

confidence (0.8015 low, 0.8313 high). 5-fold cross-validation estimated 0.8242 (ay. pred. 

error 17.57%, memory usage 47315 bytes), what fell within the OPTEX 95%-ile interval. 

It is interesting to compare the performance of automated tuning of the high level para-

meters against the outcomes provided by human experts. Work [9] presents the results 

of manual tuning of the Fuzzy-ARTMAP system in the same as our robotic application. 

The best predictive accuracy reported there was 16% at ea = 0.89 and 13. = 0.3, cal-

culated with the hold-out method. Those results were achieved in 5 epochs of training, 
after an unspecified but large number of manual optimization experiments. Our setup is 
just slightly different f we allow 3 epochs of training, use pessibly more relevant validation 
methods, restrict memory usage and perform tests over a slightly different data popula-
tion). By applying the 5-fold cross-validation in our setup at the same setpoint as above, 
we obtained the objective function value as high as 0.8341, predictive error of 16.6% and 
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Optimizer: IEMAX 
2-D 

OPTEX 
2-D 

OPTEX 
8-D 

Human 

PMAX 
predictions 

predicted optimal value . 0.8070 0.8160 0.8538 n.a. 
confidence interval half-width 0.0170 0.0149 0.2676 n.a. 

5-fold CV 
MOMS 

score at the predicted optimum 0.8240 0.8240 0.8553 0.8341 
predictive accuracy 17.56% 17.57% 14.47% 16.6% 
average memory usage (bytes) 45523 47315 48379 56600 

Table 1: Summary of the results revealed by IEMAX and OPTEX working on 2-D opti-
mization task, OPTEX tuning eight high level parameters, and the results obtained using 
suggestions provided in [9] by a human expert. 

average memory usage 56600 bytes. These results slightly, but clearly, outperformed those 
obtained with automated tuning. 

Despite that, the true power of automated tuning should become clear in a more than just 
2-D decision space. Among the tested experimental design heuristics, so far only OPTEX 
demonstrated capability of achieving affordable confidence about the predicted optima 
in eight-dimensional space within 200 validation cycles. At the 123rd step the reported 
optimal objective function value was 0.8538 (at p° = 0.357, r = 0.914, aa = 0.9997, 

= 0.3506ea, „4= 0.01 = 0.97, e l' = 0.997, r b = 0.6367, e = 0.9383e). The 5-fold 
cross-validation prediction at the same point scored 0.8553 with the average error 14.47% 
and memory usage of 48379 bytes, which was the best overall result obtained so far. Table 
1 contains a summary of the results revealed by IEMAX and OPTEX when working in 
two dimensions, OPTEX when optimizing the 8-D case, and those obtained by a human 
expert (after [9]). 

5 CONCLUSION 

In this paper we presented a method for automated tuning of high level parameters 
of supervised learning algorithms, combined with an experimental validation of their 
performance. We verified the method on a neural network applied to a fairly well studied 
practical robotic task, with use of realistic, noisy and nonuniformly distributed training 
data. In fact, the method may be directly applied to any kind of a supervised learning 
algorithm, which is controlled with continuous numeric high level parameters. 

The results obtained in a reasonably few tuning steps are almost as good as those 
achieved during an extensive manual experimentation performed by human experts in 
a two-dimensional optimization case. An attempt in eight dimensions revealed an imme-
diate improvement over a human-generated outcome. 

We are directing our future research towards using adaptive kernel width in locally weigh-
ted regression models, so that model's resolution might vary along the search space from 
fine around regions of high expentance and high data density, to coarse elsewhere. Such 
an extension should make the confidence intervals adaptation smoother, and thus allow 
IEMAX and OPTEX to avoid low outcome regions of the high level parameters space in 
the,earlier stages of optimization than they do in the current setup. 

Another interesting issue is related to multicriterial optimization. It is possible to build 
regression models for each of the decision attributes separately, instead of maintaining a 
single model for an objective function of multiple attributes. Separate models would be 
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independent on the particular form of the objective function. 
One of practical questions in tuning the learning algorithms is which of the high level para-
meters (or their combinations) are vital, and which of them do not influence the learner's 
performance very much. With an experimental knowledge collected in the memory-based 
models we have a potential to answer that question. 
The presented method of validation and tuning of learning algorithms relies on the pro-
posed stochastic resampling scheme. In this paper we limited our discussion to the case 
in which at each optimization step only one training-testing data fold was taken into 
account. In fact K-fold stochastic validation does not impose such a limit. It is legal to 
take into consideration outcomes obtained with more than one random data split at each 
optimization step. It would be interesting to see what is the optimal amount of resam-
pling, given optimization time constraints. An intrigued reader will find some insights on 
that matter in [4]. 

The future research issues will be examined using the presented mobile robot localization 
setup and on a cellular neural network application to a mobile robot scene segmentation 
task, which is currently being implemented. 
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