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MODEL-BASED NAVIGATION 
OF INDUSTRIAL MOBILE ROBOTS 

Abstract: In this article the world modelling and self-localization methods 
for mobile robots operating in an industrial environment are discussed. 
By maintaining the up-to-date world model' and position estimate, the 
mobile robot does not rely on wires or paint-stripes to navigate. The 
architecture of the a priori world-model has been described. Two different 
representations of the dynamic-maps are considered, namely vector-based 
and raster-based. The method for robot localization in the a priori known 
structured environment is described. 'The results of experiments in map 
building and localization, with using of the low-cost optical scanner (as 
the source of data) are presented. 

1. INTRODUCTION 

Environment modelling is an important issue for the navigation of the autonomous mo-
bile robots. The form of the model is specific to the application domain. Typically, the 
mobile robot needs the ability to construct maps from sensed data. In the case of robots 
operating in a well-structured environment the map could be provided in advance. How-
ever, even in the industrial environment, whose model is a priori known, the robot has 
to update its knowledge, in order to perform properly such tasks as path planning or 
collision avoidance. In this article, we propose two categories of the environment models. 
First category represents a priori known aspects of the environment such as the layout of 
the work cells, shape and position of static obstacles etc. They originate from preliminary 
measurements of dimensions of the scene. Such a model is treated as reference system for 
the localization of robots, and the source of reliable information used for task planning 
and map maintenance. Second class of models is supposed to reflect dynamic changes of 
the scene. These maps are based on sensory data, and are permanently updated. 
An important requirement for a mobile robot is also to locate itself in the environment. 
Since accuracy of odometry decreases over the covered distance [6], the robot has to 
correct its position using measurements from external sensors. If the map of the work-
ing field is known a priori, the self-localization can be accomplished by establishing the 
correspondence between current sensory input and the set of known landmarks. 

Perception system is one of the fundamental elements of an autonomous mobile robot. 
Fs!:ir industrial applications, this system has to be simple and low cost. There are many 
different sensor systems used with mobile robots. One of the most appropriate sensors 
fOr industrial robots are optical/laser rLge finders and scanners [8]. The infrared-LED 
bas. ed scanner has been used as the principal on-board sensor on our experimental mo-
bIle robot [8, 12]. This is a device developed at our department, especially for mobile 
robots. Fields of application for this inexpensive scanner could be first of all cost critical 
systems (e.g. industrial applications). The commercial IR range finder (manufactured by 
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Pepperl+Fuchs GmbH) has been used in this sensor system as the linear distance mea-

surement head. During the tests performed in our laboratory [9], it has been found, that 

the parameters of this head are worse than those declared by the manufacturer (Fig. 1A), 

The results of these tests motivated us to develop the method for eliminating of some sys-

tematic errors in range measurements [9]. Thanks to this correction the error in distance 

measurement does not exceed 5cm for actual distances up to 4m, regardless of the beam 

incidence angle 4) (Fig. 1B), This performance is acceptable for most of the mobile robot 
navigation purpose . The correction procedure has been used in the map building and 

localization methods for the mobile robot described in the next sections. 
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Figure 1: The correction of range measurements 

2. REPRESENTING THE A PRIORI KNOWLEDGE 

Target application for the model-based navigation concepts which are discussed here are 

the industrial systems. In that case, the environment usually consists of simple form 

objects and the location of the principal objects is fixed at least for smile period of time. 

In particular, the major part of the scene can be represented by polyhedral models. Such a 

simplified geometrical representation is used in order to reduce computational complexity 

problems. On the other hand, this representation can be sufficient for navigation tasks. 

Polyhedral scene model is compact and easily defined, it fits the natural properties of 
industrial scenes, and it can be supported by the available sensors (e.g. scanner). 

Figure 2: Predefined model of the indoor environMent 

The Geometrical Data Base (GDB) has been defined to incorporate and handle static 

elements of the scene model. It contains all available a priori geometrical knowledge. The
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GDB provides the shape and layout information describing such elements of the scene 
as walls, doorways, corridors, and some other stationary elements like machine-tools or 
furniture (Fig. 2A). In this system simple objects are represented with free polyhedrons. 
Compound objects consisting of multiple primitive solids are also allowed. Some objects 
are placed in the library as generic prototypes. The abstraction of the GUB into 2.5D/2D-
vector (Fig. 2B) or into raster-map is possible. This allows the fusion of the acquired 
sensor data with the a priori model. 

3. ENVIRONMENT MODELLING 

3.1. Vector-based maps 

In the industrial systems, the major part of the scene can be represented by 2D polygon 
models. Such vector-based maps are concise data structures which can be efficiently used 
for path planning, robot positioning and object recognition. Moreover, these maps fit well 
to the natural data acquisition scheme associated with optical/laser scanners. 
In this section, we describe techniques for building of the 2D vector map from scanner 
data. The map is built in terms of geometric primitives that are represented by the vectors 
of parameters and their covariance matrices modelling spatial uncertainty. In addition, 
each object in the map includes quality parameter and keeps track of the number of times 
it has been observed and updated. Unlike some other methods known from literature 
[7], the here proposed method defines the map with three different kinds of primitives : 
polygons, poly-lines, and clusters (the last ones represent distance measurements which 
cannot be assigned to lines). The above primitives are represented by their coordinates 
in the global frame. Clusters are sets of points enveloped by convex hulls, that represent 
them [12]. 
The initial data processing step is the correction of scanner measurements. Plausibility 
checks are also applied to refuse some erroneous sensor readings. In the next step, the 
scanned points are transformed into cartesian coordinates Xp = (x,y). The uncertainty 
of location of the measured points depends on the uncertainty of the measurements vector 
M (P, (pr which is represented by the covariance matrix CM: 

cr2 O 
Cm = [ 

' 
(1) O o2 

Because the relation between M and X is nonlinear, the covariance matrix Cp represent-
ing spatial uncertainty of a point is calculated from the first-order approximation: 

Cp = JpCmg. (2) 

where Jp is the Jacobian of the transformat to vector M. In the following step the 
Points are grouped together to form individual objects [12]. The Iterative End Point Fit 
algorithm [2] is applied to find single elements of lines from groups of points representing 
Particular objects. The result of the splitting process are the points suitable for line fitting. 
The — suvporting line of a line segment is represented by the equation: 

x cos(0) + y sin(0) —T = O 
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The vector L tr, 017. of parameters of this equation is computed by using the least 

squares method. This transformation can be generally expressed as L = fL(Xp) (see 

[13] for details). The uncertainty of line parameters depends on the uncertainty 'of all 

the measured points and is represented by covariance matrix CL obtained from following 

expression : n, 
CL = EJLCPJ (4) 

where np is the number of scanned points, JL is the Jacobian of the nonlinear transformat 

fc, with respect to the vector Xp, and Cpi is the covariance matrix of i-th point Xp,. 

The equation (3) describes an infinite line. To obtain a line segment which describes the 

possible edge of an obstacle, the coordinates of the starting and end points are determined 

[13]. 

The model of the whole environment explored by the mobile robot is obtained by inte-

grating the line segments and clusters from local maps generated during the execution of 

robot path. Because the low scanning frequency makes it impossible to do measurements 

during robot motion, the robot stops to scan the surrounding, updates its internal map 

and continues the trip. The aggregation of line segments from different local maps is per-

formed in two stages : matching and fusion. The matching procedure checks whether or 

not segments are part of the same edge. If the parameters of the supporting lines do not 

differ more than assumed and the distances between endpoints of the line segments fall 

within the tolerance range, then the segments pass the matching test [12, 13]. The fusion 

procedure approximates the new line segment from two segments which were detected be-

fore. For the new line the parameters of equation (3) are computed from the parameters 

of the supporting lines of the fused segments, by taking into account ttie uncertainties of 

both r and parameters, represented by the covariance matrix CL. This is done by using 

a Kalman filter algorithm: 

K = CLI (CLI + CL2)-1) (5) 

= L1 - K(LI (6) 

CL, = (I — K)CLi . (7) 

where Lf is the vector of parameters of the fused line, CL, is its covariance matrix, and 

K is the Kalman gain. 

Next, the new end points of the fused line segment are determined [13]. Fused line seg-

ments put in the global map include also a parameter qn that depends on the number of 

times it has been observed and updated. This parameter is incremented if a line segment 

in the global map is matched to a segment from the local map. Unmatched line segments 

in the local map are copied into the global map and have a quality parameter set to 

qn = 1. The last stage of building the global vector map consists of the reconstruction 

of complex geometric objects by using the detected line segments and clusters [12]. For 

path planning purposes, the lines would be more useful if they were grouped together into 

polygons and poly-lines. 

Test runs of the map building system have been performed in the corridors of our labora-

tory. The global vector map that has been obtained while the robot followed a path and 

took scans from 9 scanning positions is shown in Figure 3. 
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Figure 3: Vector map of the hallway built from scanner data 

3.2. Raster-based maps 

The problems in vector map building are mainly related to the difficulties in the interpre-
tation of sensory data. The uncertainties associated with the sensor noise can be handled 
by statistical methods (e.g. Kalman filtering), but it is rather difficult to Cope with the 
uncertainty associated with the validity of sensory readings. Vector-based map builder 
(as described in the previous section) needs accurate and dense-sampled measurements 
to produce an usable map. Because the industrial mobile robots have to be low-cost, 
they are widely equipped with the simple and cheap ultrasonic ,range finders (sonars). A 
credible vector map can not be based solely on sonar data, because sonars suffer from 
wide-beam problems and specular reflections which results in many spurious readings [8].. 

A very convenient tool for dealing with spurious sensory data is the occupancy grid based 
approach [5]. Occupancy grids represent space as an array of cells, each one holding an 
estimate of the confidence that it is empty/occupied. Raster maps tolerate data uncer-
tainty and ambiguity, even' when weakly-structured environments have to be described. 
They however require large amount of memory, whenever large floor areas have to be 
covered with dense raster. Their further disadvantage is the rough raster-discretisation 
of obstacles on the scene. 

Figure 4: Raster map of the hallway built from scanner data 

The raster-maps presented in this article have been tested especially in the context of the 
niulti-robot navigation in an industrial environment [10]. So far raster maps have been 
Pr°Posed to let the robots with limited perceptual competence (e.g. equipped only with 
s'InPle sonars) to build the updated map. Robot equipped with both sonars and scanner 
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can build raster maps by using both sources of data, because these maps in natural way 

can fuse data from various types of sensors. 

Raster maps are updated by using Bayesian integration scheme [111. Occupancy proba-

bility density function is updated for each distance measurement, by using the Gaussian 
distribution pattern and the current variance of the measurement. Moreover, plausibility 
checks are applied to exclude some spurious sensor readings from the map updating pro-

cess. The raster map can be initialized with the content of the GDB, and in such case 
the sensory data are used only to up-date this map. Figure 4 shows the raster map of 
the laboratory hallway built from scanner data. The same data as for the vector map 

presented above were used. 

4. MODEL-BASED LOCALIZATION OF THE ROBOT 

In this section a global localization system is described, that allows the mobile robot to 

estimate its position arid orientation in a structured indoor environment. The availability 

of the a priori model of the environment is assumed. Because the system will be used 

in office/factory buildings this assumption is justified. Unfortunately, the optical .scan-

ner does not have intensity channel available, so it is not able to identify retrorefiective 

landmarks. For this reason a method based on naturally occurring geometrical structures 

has been proposed. These features are extracted from the scanner data, and are used as 
reference points, so the system is independent of any artificial landmarks. Considering 
a typical indoor environment, the vertices, corners and doorways have been chosen as 
natural landmarks. Methods for natural landmarks extraction are based on scanner data 
processing algorithms which have been described in the previous sections. The disadvan-
tage of the scanner is its low data acquisition rate. This causes the robót to stop while the 
measurement are taken. The robot moves under odometric control for a period of time, 

then stops to locate landmarks, updates its position and continues the trip. Due to this 

fact and the poor performance of odometry of the LabMate platform, it is not possible to 

use localization algorithm assuming that the displacement between the sensed data and 

the reference model is small [1]. 

In our approach the matching algorithm establishes the correspondence between these 

natural landmarks extracted from current sensory input (local map) and the reference 

points in the global map. The localization method is feature-based, so only the most 

distinctive structures from the GDB content (such as wall junctions) are used. The 2D 
coordinates of such points are calculated, and for each landmark the distances between 

it and all other possible landmarks are computed. The list of landmarks and distances 

serves as the environment representation during the matching stage [3]. To establish a 
correspondence between extracted features and the known landmarks a matching algo-
rithm that compares not single landmarks but structures created from all the extracted 
features has been employed [14]. This approach is very useful in a cluttered environment 
with many "spurious" landmarks. If three or more landmarks are matched with the cor-
responding reference points in the global map, then it is possible to calculate the position 

and orientation of the vehicle by using triangulation. 

As the triangulation method is sensitive to errors [6], natural landmarks are located 

randomly, the accuracy of some landmarks location is poor, and spurious features due to 

not modelled obstacles are possible, the landmark selection method has been developed, 

which makes possible to choose the best landmarks among all extracted features. Because 
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there is no single measure relevant to all the aspects of landmarks "goodness" a fuzzy 

inference approach has been proposed merging the measures for particular attributes of 

a landmark [14]. 

The localization experiment has been performed in a well structured environment, but 
cluttered with several unknown obstacles (white cylinders on Fig. 5A). The length of 

the preplanned path was 15 meters. Due to the odometry errors the robot was not able 

to execute this path without performing the relocalization. With the self-localization 
performed at 9 preplanned points the position errors Ax and Ay were kept below 12cm. 

The natural landmarks extracted from sensory data at one of the scanning positions are 
shown in Fig. 5B. 
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Figure 5: The robot while experiment (A) and the extracted landmarks (B) 

5. CONCLUSIOIsTS 

The aim of the research presented here was to develop and preliminarily verify subsystems 
which are essential to the operation of the mobile robots in typical industrial environment. 
These subsystems are : environment model based on the a priori knowledge, two different 
(and in some sense complementary) map-builders, and the self-localization subsystem. 
By maintaining the up-to-date world model and position estimate, the industrial mobile 
robots are not forced to rely on wires or paint-stripes to navigate. The environment models 
are aimed at supporting robot navigation. Input data used for map building are provided 
by sensors or are derived from the GDB, so the maps can contain both the a priori and 
the accumulated knowledge about the scene. We let the coexistence of different forms 
of the environment model to promote the more flexible use of sensors having different 
operational characteristics. Moreover, this approach supports the multi-robot navigation 
schemes because the robots with different perceptual competence can build the updated 
world model and share the acquired knowledge [10]. The selection which map is used 
depends widely on the task. If the high accuracy of path planning and self-localization 
IS needed, the exact vector map seems to be most appropriate. Raster-based maps are 
e.sPecially useful as the solution enabling direct sensor fusion. Though this representation 
Is. m. ore expensive than the vector one, the small requirements regarding sensor equipment 
is Its unique advantage in the context of low-cost applications. 
The Possibility of using the low.-cost optical scanner as the primary sensor for mobile 
robots has been demonstrated. This sensor has been used as the principal source of data 
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in all the subsystems presented here. From experiments performed in a real environment 

it could be seen that all the systems demonstrate a satisfying performance to cost ratio. 
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