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EMBODIED ARTIFICIAL INTELLIGENCE 
- ON THE ROLE OF MORPHOLOGY AND MATERIALS IN 

THE EMERGENCE OF ADAPTŃE BEHAVIOUR 

In the early days of artificial intelligence the focus was on abstract thinking 
and problem solving. These phenomena could be naturally mapped onto 
algorithms, which is why originally artificial intelligence was cónsidered to 
be part of computer science. Over time, it turned out that this view was too 
limited to understand natural forms of intelligence and that embodiment 
must be taken into account. As a consequence the focus changed to systems 
that are able to autonomously interact with their environment. The major 
implications of embodiment, dynamical and information theoretic, are 
illustrated in a number of case studies. Two grand challenges, evolving 
grounded intelligence and exploring ecological balance, i.e. the relation 
between task environment, morphology, materials, and control in an 
artificial organism, are discussed. - 

1. INTRODUCTION 

Computer science has grown into an enormous discipline with many subfields and it is often 
hard to see how the different areas are still connected to form one discipline, except that they 
all, one way or other, deal with computers. What about Artificial Intelligence? For several 
decades, i.e. from the 50s until the mid-80s it was mostly concerned with algorithms, for 
example for playing chess, checkers (and other games), solving cryptarithmetic puzzles, or 
natural language processing of written text. Because of this perspective, it was considered a 
subdiscipline of computer science. As we will be arguing below, there have been severe 
limitations of this approach because of its focus on algorithms exclusively. Over time, it 
became clear that intelligence was not so much a question of algorithms but of the interaction 
of an agent with the real world and researchers started using robots as their workhorse. This 
change in orientation entails many new research issues that are well outside the field of 
computer science. Not all researchers in artificial intelligence have changed direction; many 
are continuing to pursue the algorithmic approach. Which direction one is interested in 
depends on the goals: If the goal is to find a solution to a problem, the algorithmic approach 
might be best (e.g. Wolfgang Wahlster, this volume). However, if it is to understand the 
principles underlying (naturally) intelligent behavior, the alternative approach, i.e. the one of 
embodiment is better suited, as will be argued later. 
We begin with a short history of artificial intelligence. Then we introduce the concept of 
embodiment and provide a set of case studies to illustrate the different kinds of implications. 
Next we attempt to characterize the state of the art in the field of embodied artificial 
intelligence. This is followed by an outline of some of the grand challenges. 
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2. A BRIEF HISTORY OF ARTIFICIAL INTELLIGENCE 

The field of artificial intelligence has dramatically changed during the past 15 years-or-so. 
Initially, starting in the fifties, intelligence was essentially considered to be synonymous with 
thinking, i.e. with problem solving, reasoning, and logical deduction. Within this framework 
thinking could naturally be conceptualized as a sequence of steps, as algorithms. The main 
idea of the classical or traditional approach in artificial intelligence can be captured in the so-
called cognitivistic paradigm which states that cognition can be viewed as computation, 
cognition being a very general term for mental processes. This implies that intelligence can be 
studied at the level of algorithms and there is no need to investigate the underlying physical 
processes. Thus, there is a deliberate abstraction from the physical level. This paradigm has 
spawned a host of research and artificial intelligence grew into a large discipline consisting of 
many different subfields, including knowledge representation, logic, planning, natural 
language processing, problem solving and reasoning, expert systems, qualitative reasoning 
about physical processes, theorem proving, and machine learning. 
During the 1980s artificial intelligence was booming, in particular the field of so-called expert 
systems. There had been high hopes that we would soon have computer programs capable of 
solving real-world problems like medical diagnosis, configuration and repair of complex 
devices, scheduling, commercial loan assessment, etc. By the end of the 1980s it had become 
clear that expert systems had not been successful. The idea underlying expert systems, that 
human expertise — or intelligence if you like — could be captured in a possibly large set of 
logical rules that could then be run on a computer, proved to be an inappropriate model of the 
true nature of human expertise (for a review of the arguments see, e.g. Clancey, 1997; Pfeifer 
and Scheier, 1999; Vinkhuyzen, 1998; Winograd and Flores, 1986). One of the most 
fundamental problems with such systems was the lack of grounding. Grounding means that an 
expert's skills are built on top of a long history of interaction with a physical and social world 
during which sensory-motor and perceptual skills have evolved. An implication of grounded 
intelligence is that abstract concepts and symbols can be meaningfully interpreted vis-A.-vis 
the real world. It became apparent that intelligence could not be sensibly conceived of in 
purely computational terms. 
In addition to these developments, evidence for the problems with the cognitivistic approach 
to artificial intelligence came from another area. Around the same time, i.e. also during the 
1980s, many people started building robots. The basic idea of the traditional approach to 
robotics has been and still is that the essence of intelligence is to be seen in the internal, 
symbolic processing. All that would be required, so the rationale, is to attach a camera and 
some actuators in order to have a system that can interact with the real world. One could then 
map the camera image onto an internal representation, a model of the real world,' generate a 
plan of action that could then be executed by thelrobot. In the meantime, it is well-known that 
this approach which constitutes the standard apprpach to computer vision did not pan out irk 
general. It only worked in well-defined settings like factory environments. The limitations of 
viewing intelligence as a computational phenomenon exclusively became obvious. Given 
these insurmountable problems a radically new approach was required. Rodney Brooks of the 
MIT Artificial Intelligence Laboratory suggested that we forget about logic and problem 
solving, that we do away with thinking and with what people call high-level cognition and 
focus on the interaction with the real world (Brooks, 1991a, b). This interaction is, of course, 
always mediated by a body, i.e. the proposal was that intelligence be "embodied". What 
originally seemed nothing more than yet another buzzword turned out to have profound 
ramifications and rapidly changed the research_ disciplines Of artificial intelligence and 
cognitive science. It is currently beginning to exert its influence on psychology, neurobiology, 
and ethology, as well as engineering. 
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Research in artificial intelligence employs a synthetic methodology, i.e. an approach that can 

be succinctly characterized as "understanding by building": by developing artifacts that 
mimic certain aspects of the behavior of natural systems, a deeper understanding of that 
behavior can be acquired. There are three aspects to the synthetic methodology: (1) building a 
model of some aspect of a natural system, (2) abstracting general principles of intelligence, 

and (3) applying these abstract principles to the design of intelligent systems. The artifacts of 
interest are either computer programs, as in classical artificial intelligence, or robots as in 
embodied artificial intelligence. In the embodied approach simulations are used as well, but 
they are of a particular type and include models of an independent environment that have their 
own dynamics, as well as the agent's sensory and motor interactions with these surroundings. 
The synthetic methodology contrasts with the analytic one where a given system is analyzed 
in a top-down manner, as is the standard way of proceeding in science. 

3. EMBODIMENT 

The goal of this section is to introduce the novel ideas that have been developed within the 
framework of embodied artificial intelligence. In particular we will show that embodiment 
means much more than simply "using a robot" — it requires an entirely new way of thinking, 
and it necessitates reflecting on the interaction with the real world; the latter is messy and not 
as neat as the world of the virtual machine. We start with a few comments on embodiment 
and then present a series of case studies. 

3.1. Implications of embodiment 

Embodiment has two Main types of implications, physical and information theoretic. The 
former are concerned with physical forces, inertia, friction, vibrations, and energy dissipation, 
i.e. anything concerned with the (physical) dynamics of the system, the latter with the relation 
between sensory signals, motor control, and neural substrate. Rather than focusing on the 
neural substrate only, the focus is now on the complete organism which includes morphology 
(shape, distribution and physical characteristics of sensors and actuators, limbs, etc.) and 
materials. One of the surprising consequences is that often, problems that seem very hard if 
viewed from a purely computational perspective, turn out to be easy if the embodiment and 
the interaction with the environment are appropriately taken into account. For example, given 
a particular task environment, if the morphology is right, the amount of neural processing 
required may be significantly reduced (e.g. case study 1). Because of this perspective on 
embodiment, entirely new issues are raised and need to be taken into account. An important 
one concerns the so-called "ecological balance", i.e. the interplay between the sensory system, 
the motor system, the neural substrate, and the materials used (Hara and Pfeifer, 2000; Pfeifer, 
1996; Pfeifer, 1999, 2000; Pfeifer and Scheier, 1999). Ten years of research in this new field 
have generated a large number of fascinating results and unexpected insights. 

3.2. Case studies 

We begin with a simple robotics experiment, the "Swiss Robots" and an example from 
artificial evolution which illustrate mostly the relation between behavior, sensor morphology, 
and internal mechanism. Then we discuss motor systems, in particular biped walking, and 
muscles where the exploitation of (physical) dynamics is demonstrated. Finally we will show 
how it all fits together. 
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3.2.1. Case study 1: The "Swiss Robots" 

The "Swiss Robots" (figure 2a) can clean an arena cluttered with Styrofoam cubes (figure 2b) 
(which is why they are called the "Swiss Robots"). They can do this, even though they are 
only equipped with a simple obstacle avoidance reflex based in infrared (1R) sensors. The 
reflex can be described as "stimulation of right 1R sensor, turn left", "stimulation of left IR 
sensor, turn right". If a robot happens to encounter a cube head-on, there will be no sensory 
stimulation because of the physical arrangement of the sensors and the robot will move 
forward and at the same time push the cube until it encounters another one on the side (figure 
2c) at which point it will turn away. If the position of the sensors is changed (figure 2d), the 
robots no longer clean the arena, although the control program is exactly the same (for more 
detail, the reader is referred to Mans and te Boekhorst, 1996; Pfeifer and Scheier, 1998; or 
Pfeifer, 1999). Another powerful idea which is illustrated by this example is that if the 
morphology is right, control can become much simpler (in this case a simple obstacle 
avoidance reflex leads to clustering behavior). This point will be further illustrated when we 
discuss the trade-off between morphology and control in the following case study on the 
evolution of the morphology of an "insect eye" on a robot. 
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Figure 1: The "Swiss Robots". (a) Robot with IR sensors and neural network implementing a simple avoidance 
reflex. (b) Clustering process. (c) Explanation of cluster formation. (d) Changed morphology: modified sensor 
positioning (details: see text). 

3.2.2. Case study 2: Evolving the morphology of an "insect eye" on a robot 

When sitting in a train, looking out the window in the direction of the train, a lighi point, say a 
tree, will travel slowly across the visual field as long As the tree is well in front and far away. 
The closer we are getting, the more the tree will move to the side, and the faster it will move 
across the visual field. This is called the phenomenon of motion parallax; it is solely a result 
of the geometry of the system-environment interaction and does not depend on the 
characteristics of the visual system. If the agent is moving at a fixed lateral distance to an 
object with a constant speed we may want its motion detectors to deliver a constant value to 
reflect the constant speed. Assume now that we have an insect eye consisting of many facets 
or ommatidia. If they are evenly spaced, i.e. if the angles between them are constant (figure' 
2a), different motion detector circuits have to be used for each pair of facets. If they are more 
densely spaced toward the front (figured 2b), the same circuits can be used for motion 
detection in the entire eye. Indeed, this has been found to be the case in certain species of flies 
(Franceschini et al., 1992) where the same kind of motion detectors are used throughout the 
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eye, the so-called EMDs, the Elementary Motion Detectors. Thus, if the cells are 
appropriately positioned much less computation has to be done. This is an illustration of how 
morphology can be traded for computation. Where this trade-off is chosen depends on the 
particular task environment, or in natural systems, on the ecological niche: natural evolution 
has come up with a particular solution because morphology and neural substrate have co-
evolved. 

Consta'itt transition 

Sitsw transition 

Figure 2: Trading morphology for computation. (a) Evenly spaced facets imply different 
motion detection circuits for different pairs of facets. (b) Inhomogeneous distribution of facets 
implying that the same neural circuits can be used for motion detection throughout the entire 
eye. 

In order to explore these ideas, Lichtensteiger and Eggenberger (1999) evolved the 
morphology of an "insect eye" on a real robot: They fixed the neural substrate, i.e. the 
elementary motion detectors which were taken to be the same for all pairs of facets were not 
changed during the experiment, and they used a flexible morphology where they could adjust 
at what angles the facets were positioned (figure 3c). They used an evolution strategy 
(Rechenberg, 1973) to evolve the angles for the task of maintaining a minimal lateral distance 
to an object. The results confirm the theoretical predictions: the facets end up with an 
inhomogeneous distribution with a higher density towards the front (figure 3b). The idea of 
space-variant sensing (e.g. Ferrari et al., 1995; Toepfer et al., 1998) capitalizes on this trade-
off and is gaining rapid acceptance in the field of robot vision. 

Although these examples are very simple and obvious, they demonstrate the interdependence 
of morphology and control, a point that should always be explicitly taken into account but has 
todate not bee systematically studied. 

a b. c. 
Figure 3: Evolving the morphology of an "insect eye". (a) The Eyebot used for experiments 
on motion parallax. (b) The experiment seen from the top. The robot has to maintain a 
miminal lateral distance to an obstacle (indicated by the vertical light tube) by modifying its 
morphology, i.e. the positioning of the facet tubes. This is under the control of an evolution 
strategy. The same EMDs are used for all pairs of facets. (c) Final distribution of facets from 
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three different runs. The front of the robot is towards the right. In all of runs, the distribution 
is more dense towards the front than on the side. In all of them, there are no facets directly in 
the front of the robot. This is because of the low resolution (the aperture) of the tubes. 

3.2.3. Case study 3: The passive dynamic walker 
Let us start with an example illustrating the relation between morphology, materials, and 
control. The passive dynamic walker (McGeer, 1990a, b), illustrated in figure 4, is a robot (or, 
if you like, a mechanical device) capable of walking down an incline without any actuation 
whatsoever. In other words, there are no motors and there is no control on the robot; it is 
brainless, so to speak. In order to achieve this task the passive dynamics of the robot, its body 
and its limbs, must be exploited. This kind of walking is very energy efficient but its 
"ecological niche" (i.e. the environment in which the robot is capable of operating) is 
extremely narrow: it only consists of inclines of certain angles. The strategy is to build a 
passive dynamic walker, and then to extend its ecological niche and have the robot walk on a 
flat surface (and later more complex environments) by only adding little actuation and 
control. Energy-efficiency is achieved because in this approach the robot is operated near one 
of its Eigenfrequencies. 

a. 
Figure 4 Two approaches to robot building. (a) The passive dynamic walker, (b) the Honda 
robot. 

A different approach has been taken by the Honda design team. There the goal was to have a 
robot that could perform a large number of movements. The methodology was to record 
human movements and then to reproduce them on the robot which leads to a relatively natural 
behavior of the robot. On the other hand control is extremely complex and there is no 
exploitation of the intrinsic dynamics as in the case of the passive dynamic walker. The 
implication is also that the movement is not energy t fficient. It should be noted that even if 
the agent is of high complexity as the Honda robot, there is nothing that prevents the 
eXploitation of its passive dynamics. 

There are two main conclusions that can be drawń from these examples. First, it is important 
to exploit the dynamics in order to achieve energy-efficient and natural kinds of movements. 
The term "natural" not only applies to biological systems, but artificial systems also have 
their intrinsic natural dynamics. Second, there is a kind of trade-off or balance: the better the 
exploitation of the dynamics, the simpler the control, the less neural processing will be 
required and vice versa. 
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3.2.4. Case study 4: Muscles — control from materials 

Let us pursue this idea of exploiting the dynamics a little further and show how it can be taken 
into account to design actual robots. Most robot arms available today work with rigid 
materials and electrical motors. Natural arms, by contrast, are built of muscles, tendons, 
ligaments, and bones, materials that are non-rigid to varying degrees. All these materials have 
their own intrinsic properties like mass, stiffness, elasticity, viscosity, temporal 
characteristics, damping, and contraction ratio to mention but a few. These properties are all 
exploited in interesting ways in natural systems. For example, there is a natural position for a 
human arm which is determined by its anatomy and by these properties. Grasping an object 
like a cup with the right hand is normally done with the palm facing left, but could also be 
done — with considerable additional effort — the other way around. Assume now that the palm 
of your right hand is facing right and you let go. Your arm will immediately turn back into its 
natural position. This is not achieved by neural control but by the properties of the muscle-
tendon system: On the one hand the system acts like a spring — the more you stretch it, the 
more force you have tó apply and if you let go the spring moves back into its resting position. 
On the other there is intrinsic damping. Normally reaching equilibrium position and damping 
is conceived of in terms of electronic (or neural) control, whereas in this case, this is achieved 
(mostly) through the material properties. 
These ideas can be transferred to robots. Many researchers have started building artificial 
muscles (for reviews of the various technologies see, e.g., Kornbluh et al., 1998 and 
Shahinpoor, 2000) and used them on robots, as illustrated in figure 5. ISACi a "feeding 
robot", and the artificial hand by Lee and Shimoyama use pneumatic actuators, Cog the series 
elastic actuators, and the Face Robot shape memory alloys. Facial expresgions also provide an 
interesting illustration for the point to be made here. If the facial tissue has the right sorts of 
material properties in terms of elasticity, defortnability, stiffness, etc., the neural control for 
the facial expressions becomes much simpler. For example, for smiling, although it involves 
the entire face, the actuation is very simple: the "complexity" is added by the tissue 
properties. 

a 
Figure 5: Robots with artificial muscles. (a) The service robot ISAC by Peters (Vanderbilt 
University) driven by McKibben pneumatic actuators. (b) The artificial hand by Lee and 
Shimoyama (University of Tokyo), driven by pneumatic actuators. (c) The humanoid robot 
Cog by Rodney Brooks (MIT AI Laboratory), driven by series-elastic actuators. (d) The "Face 
Robot" by Kobayashi, Hara, and lida (Science University of Tokyo), driven by shape-memory 
alloys. 

Let us briefly summarize the ideas concerning the interplay between morphology, materials, 
and control. First, given a particular task environment, the (physical) dynamics of the agent 
can be exploited which leads not only to a natural behavior of the agent, but also to higher 
energy-efficiency. Second, by exploiting the dynamics of the agent, often control can be 
significantly simplified. And third, materials have intrinsic control properties. 
We have now talked about ants, simple robots, insect eyes, simple biped walkers and artificial 
muscles. How does this all fit together and how does it relate to intelligence? These are not 
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questions that can be answered now but they constitute in fact, the major challenges in the 
field for the next 10 years. 

4. STATE OF THE ART 

Typically when discussing the state-of-the-art in artificial intelligence questions of the 
following sort are addressed: In the classical approach we could do high-level problem 
solving like medical diagnosis, theorem proving, and natural language processing. With the 
embodied approach we are doing tasks suited for robots like obstacle avoidance, navigation, 
homing, perhaps sorting objects into categories or manipulating physical objects. Where are 
we now? Have we given up on the original goal of trying to understand what people call high-
level cognition? The problem with these questions is that we have never really been able to do 
medical diagnosis, at least not in the same way that human physicians would do it, simply 
because we have not yet understood the nature of human expertise. What we have been able 
to do is define sets of rules that capture the formal aspects of diagnostic knowledge. As shown 
earlier, there is now widespread agreement, that this is not a realistic way of modeling human 
expertise. A similar point could be made about natural language. This implies that if we are 
interested in the foundations of high-level cognition, this "detour" is necessary because there 
is increasing evidence that high-level thinking must be grounded in the sensory-motor history 
of an individual's interaction with its environment. We put "detour" between quotation marks 
to indicate that this is not actually a detour but a necessary research activity. Getting there is 
one of the great challenges (see section 5). 
During the mid-1980s Rodney Brooks argued on the basis of natural evolution that we first 
need to understand simpler forms of intelligence before we can tackle higher levels as we find 
them in humans and that we should begin by wdrking on insect-like robots. He developed a 
series of highly interesting robots such as Genghis and Hannibal that imitated at some level 
insect walking. These robots could learn to walk and climb over obstacles, for example. By 
the early 1990s he claimed that these robots had achieved insect-level intelligence and that it 
was time to move to something more challenging like human-level intelligence and he 
engaged in the Cog project (e.g. Brooks et al., 1999; see below). 
While Genghis and Hannibal are fascinating and are indeed capable of imitating certain 
aspects of insect behavior, they are far from "insect intelligence". Just imagine what other 
things insects are capable of doing: the are excellent navigators, i.e. they can find their way 
with great precision in very taxing environments; they reproduce, they care for their offspring; 
they have sophisticated sensory-motor abilities; they can distinguish food from non-food; they 
can find food efficiently in the environment; they build amazing structures; and they often 
form complex societies. In this perspective Ghenghistand Hannibal are not very insect-like, 
and it is, in our view, an exaggeration to talk about insect-level intelligence. Again, this by no 
means implies that they are not interesting; they simpty have not yet achieved insect-level 
intelligence in general. 
The Cog project has the ambitious goal to eventually achieve human-level intelligence. A 
developmental approach is taken to the problem (for more detail, see section 5.1). The idea of 
this approach is to equip the robot with "human-like" sophisticated sensory and motor 
systems: There is a torso with arms a head with a neck, an active vision system, an acoustic 
system, touch sensors, and proprioceptive sensors (for measuring joint angles and forces of 
the robot's limbs). As it interacts with the real physical and social world it learns to make 
distinctions (i.e. it forms categories) and it acquires communication skills. In this way — and 
the is the grand goal of this project — what we call high4eve1 cognition can be bootstrapped 
from this embodied interaction with the real world. Anything the robot learns is thus 
"grounded", to use the jargon of the field. The conviction underlying this project and that we 
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fully share, is that intelligence must be grounded in sensory-motor interactions. Perception is 
not mapping a sensory stimulation (e.g. a pixel array) onto an internal representation but a 
sensory-motor coordination (Dewey, 1896). Again, Cog is a fascinating robot and there is a 
lot of potential for research. However, talking about human-level would be an enormous 
exaggeration. While in the case of insects we might be inclined to believe that today's robots 
have achieved their level of intelligence, it is entirely obvious that this is not the case for 
humans — infants or adults. 
The discussion about the state-of-the art in the field of robotics and artificial intelligence has 
always been difficult because of science fiction and horror scenarios. It is encumbered by 
numerous predictions that do not contribute to assessing what robots can and cannot do and 
how this will be in the future. Of course, nobody can predict the future, especially where 
technology is concerned. However, some scenarios are science fiction and do not belong into 
a scientific discourse. 

5. SOME GRAND CHALLENGES 

It will be a long way until we reach the romantic vision of understanding intelligence, 
whatever that would exactly mean. And there are many grand challenges that need to be 
resolved along the way. We discuss two that we believe cover most of the issues in the 
synthetic study of intelligence that we are currently aware of. They are both tightly 
intertwined but can be separated for the purpose of dividing up the research into manageable 
chunks. The first one implies understanding how we can evolve an artificial real-world agent, 
i.e. a robot, for high-level cognition, the second comprehension of "ecological balance". ' 

5.1. The first challenge: Evolving grounded intelligence 

One of the most fundamental abilities of agents—animals, humans, and robots—in the real 
world, is the capacity to make distinctions: food has to be distinguished from non-food, 
predators from con-specifics, the nest from the rest of the environment, and so forth. This 
ability is also called categorization and forms the basis of concept formation and ultimately 
high-level cognition. In order to elucidate the distinction between traditional computer models 
and embodied models, we briefly discuss a prominent traditional categorization model, 
ALCOVE (Kruschke, 1992). Indeed, ALCOVE is an excellent model: It can predict a large 
part of the experimental data published in the psychological categorization literature. In 
essence, ALCOVE is a connectionist model in which certain nodes, the category nodes, are 
activated whenever an instance of a particular category is encountered. In other words, these 
category nodes are representations of the categories. The task of ALCOVE can then be seen 
as one of mapping the input feature vector onto an internal representation of the category. 
The main problem with ALCOVE, as is the problem with most models in classical cognitive 
psychology and classical artificial intelligence, is that it is not connected to the outside world .
its inputs are feature vectors, its output activation levels of nodes in a neural network. In the 
real world, agents are exposed to a stream of continuously changing sensory stimulation, not 
to feature vectors, and they require a continuous stream of motor control. Moreover, there is 
the problem of object constancy, i.e. the phenomenon that the sensory stimulation from one 
and the same object varies enormously depending, for example, on distance, orientation, and 
lighting conditions. It turns out—and it has been discussed extensively in the literature—that 
categorization in the real world requires a completely different approach, as the history of 
computer vision teaches. 
The insight that categorization in the real world is not an exclusively computational problem 
and requires that embodiment be taken into account is gaining increasing acceptance: It has 
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been demonstrated that categorization is best viewed as a process of sensory-motor 
coordination (Edelman, 1987; Metta et al., 1998; Pfeifer and Scheier, 1997; Scheier, Pfeifer, 
and Kuniyoshi, 1997). The sensory stimulation that the neural system has to process depends 
on the physical characteristics and on the positioning of the sensors on the agent. But not only 
that, it also crucially depends on the agent's behavior. For example, touching a bottle with a . 
stiff hand yields entirely different sensory stimulation than fully grasping the bottle with the 
entire hand bent around the bottle. Note that this is a change in the morphology of the hand 
which leads to a change in the sensory stimulation. So, there are two closely related factors 
influencing the sensory stimulation, morphology, and sensory-motor coordination. 
The question we have to ask now is how this all connects to the study of high-level 
intelligence or cognition, how does cognition come about? What we have shown is the basic 
ways in which neural processing, morphology, and environment are interconnected. An 
increasing number of people are becoming convinced that if we are to explain cognition, we 
must understand how it evolves during ontogenetic development (e.g. Clark, 1997; Edelman, 
1987, Elman et al., 1997; Thelen and Smith, 1994). Thelen and Smith argue that while in 
human infants behavior is initially highly sensory-motor and is directly coupled to the system-
environment interaction, during development some processes become "decoupled" from the 
direct sensory-motor interaction, but the underlying mechanisms, the neural substrate, is 
exactly the same. The advent of the discovery of mirror neurons (see, e.g. Rizzolatti et al., 
2000, for an overview), i.e. neurons that are equally activated when performing or just 
observing an action, adds validity to this view. The question of what the mechanisms are 
through which, over time, this "decoupling" from the environment takes place is, to our 
knowledge, an unresolved research issue. 
The challenge for artificial intelligence is to build robots that can mimic the processes of 
human infant development. This will on the one hand help us uncover the mechanisms 
underlying development, and on the other we will be able to build highly complex and 
intelligent systems. Of course, given the current state-of-the art, it is an illusion to build a 
robot that actually (physically) grows. Perhaps with progress in nanotechnolo.gy this may 
eventually be possible. But for now we have to work with non-growing robots. Given this 
limitation, one approach is to build a humanoid robot, i.e. a robot that has some similarity 
with humans in terms of morphology (shape), sensory and motor systems. The human sensory 
and motor systems are extremely sophisticated. For example, the entire body is covered with 
many sensors, e.g. touch and temperature, there are different types of sensory channels 
(vision, hearing, touch, smell, taste), and there are many internal (proprioceptive) sensors. We 
have already discussed the complex properties of muscles. Building a complex robot implies, 
in addition to the conceptual challenges, technological ones in terms of actuators, "tissue", 
and sensors. A grand challenge indeed, requiring the cooperation of many scientific 
disciplines from computer science, developmental psychology, neuroscience, engineering and 
materials science. Mimicking human infants (or todllers) is one of the goals of the Cog 
project that was mentioned above. 
The drawback is that we are stuck with one particular design, a complex and sophisticated one 
perhaps, but still a given one. Artificial intelligence has additional possibilities in that we can 
explore designs that do not exist in nature. But how should we design our systems, then? In 
order to answer this question we need to understand "ecological balance". A good method to 
explore a problem space is artificial evolution. We will show how it can be used to understand 
and explore "ecological balance" in systematic ways. 
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5.2 The second challenge: Understanding and exploring "ecological balance" 

Using artificial evolution for design has a tradition in the field of evolutionary robotics. The 
standard approach there is to take a particular robot and use a genetic algorithm to evolve a 
control architecture for a particular task. However, if we want to explore ecological balance 

we must include morphology and materials into our evolutionary algorithms. The example of 
the Eyebot where the morphology of an "insect eye" was evolved, demonstrates another way 
in which evolution can be used: We fix the neural substrate and let evolution work on the 
morphology to solve the problem. Both of these approaches are not biologically plausible and 
can only be done in artificial systems. 
The problem with including morphology and materials is that the search space which is 
already very large for control architectures, literally explodes. Moreover, if sophisticated 
shapes and sensors are to be evolved, the length of the genome which is required for encoding 
these shapes will grow very large and there is no hope that anything will ever converge. This 
issue can be approached in various ways, we just mention two. The first which we will not 
further discuss is to parameterize the shapes, thus bringing in biases from the designer on the 
types of shapes that are possible. In the eyebol the rods with the light-sensitive cells were 
given and only the angle could be adjusted, which makes the problem very simple, but then 
there is only little variation possible in the morphology. An example that has stirred a lot of 
commotion in the media recently is provided by Hod Lipson and Jordan Pollack's robots that 
were automatically produced (Lipson and Pollack, 2000). They decided that the morphology 
would consist of rods to which different types of joints could be attached. Rods can, for 
example, be parameterized as length, diameter, and material constants etc., thus'limiting the 
space of possible shapes dramatically, but then the search space, even though it is still large, 
becomes manageable. While this example is impressive, it still implies a strong designer bias 
A more general and the more natural approach, is to not encode directly the structure of the 
organism in the genome but instead to encode the developmental processes. For example, it is 
not possible to encode the structure of the human brain in the genome because in the latter 
there is not enough information content. Once again, nature can be taken as a source of 
inspiration. 
An illustration of how biological development might be modeled is given in Eggenberger 
(1997, 1999) who succeeded in growing 3-D shapes based on the Artificial Evolutionary 
System (AES). The AES implements the biological mechanisms of gene-based cell-to-cell 
communication. The final organism corresponds to an attractor of a highly complex 
dynamical system. Although these sorts of models are only in their initial stages, they will 
become increasingly important if we are to understand the principles of "ecological balance" 
and of agent design. The attempt behind the AES is to evolve entire organisms from one cell. 
The search space is, again, extremely vast and there is little hope that anything will converge 
within reasonable time. Natural systems have evolved mechanisms to impose constraints so 
that, for example, groups of genes couple together for certain periods of time during 
development (e.g. the hox genes) which enables, for example, the coordinated growth of 
organs or limbs. 
If we have the mechanisms for co-evolving entire organisms' morphology, materials, and 
control, we have a powerful tool at hand by which we can explore the space of possible 
designs and thus "ecological balance", At the moment this is only possible in simulation; the 
experiments with artificial systems that can grow physically are only in their very initial 
stages. One way to get around this problem, at least to some extent, is on the one hand to have 
a good simulator that models the physics of an evolved individual and its interactions with the 
real world, on the other to have rapid robot building kits that enable the researchers to quickly 
build a robot to test some individuals in the real world. But even if done in simulation, 
evolving an organism from scratch is a grand challenge as well. 
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One of the problems with the examples and ideas presented in this paper is that they are 
mostly qualitative. Clearly, more quantitative statements will be required to make the story 
more compelling. But we hope that researchers will take up the challenges posed by 
embodiment. 

6. CONCLUSIONS 

We have tried to outline the history and the future of artificial intelligence, from its initial 
form as art algorithmic — cognitivistic — discipline all the way to its current embodied form. . 
The big and frequently asked question is whether this embodied approach will indeed succeed .
to achieve in a bottom-up manner, higher levels of intelligence that go beyond direct sensory-
motor tasks. We feel that this is indeed the case: It has been suggested, for example, that even 
abstract relationships like transitivity can be explained as emergent from embodied 
interactions with the environment (Linda Smith, pers. comm.). A similar argument has been 
made for mathematical concepts (e.g. Nnriez and Lakoff, 1998). The jury is- still out on 
whether this is a sound intuition or will turn out to be flawed; all we can do at the moment is 
outline a research program. But because embodiment provides a new perspective and many 
ideas for empirical studies on natural and artificial systems, as well as for new kinds of 
agents, we are optimistic that we can achieve a better understanding of intelligence in the 
future. 
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