Prohlr hab. inż. **Tadeusz Kaczorek** Politechnika Warszawska

INFLUENCE OF THE STATE-FEEDBACK ON CYCLICITY OF LINEAR SYSTEMS

Abstract. It is shown that every second order nonzero minor of the (polynomial matrix $P_A igg[[I_n s - A]^{-1} = \frac{P_A}{d}, A \in R^{n \times n}, n \ge 2 \bigg)$ is divisible (with **zero remainder) by the polynomial d if and only if the characteristic** polynomial $\varphi(s) = \det[I_n s - A]$ is equal to the minimal polynomial $\Psi(s)$ of A . If the transfer matrix of m-inputs and p-outputs $min(m, p) \geq 2$ linear **system is written in the standard form** $T = \frac{P}{d}$ **(d is the minimal common denominator), then every second order nonzero minor of P is divisible by d if and only if q = d, where q is the McMillan polynomial of T. If the pair (A, b) of single-input system is controllable then the closed-loop matrix** $A_c = A + bk$ (k is a gain matrix) is cyclic if and only if the matrix A is also **cyclic. If the pair (A,B) of m-input system is controllable and A is not** cyclic then there exists a feedback gain matrix K such that $A_c = A + BK$ is **cyclic. If the pair (A,B) is uncontrollable and A is not cyclic then there exists a feedback gain matrix K such that** $A_c = A + BK$ **is cyclic if and only** if the submatrix A_3 of (50) of the uncontrollable part of the system is cyclic.

Streszczenie. W pracy wykazano, że każdy **niezerowy minor stopnia drugiego macierzy** $P_A \left[I_n s - A \right]^{-1} = \frac{I_A}{d}, A \in R^{n \times n}, n \ge 2$ jest podzielny bez **reszty przez wielomian d wtedy i tylko wtedy, gdy wielomian** $characterystyczny$ $\varphi(s) = det[I_n s - A]$ *jest równy wielomianowi* **minimalnemu W(s) macierzy A.** Jeżeli **macierz transmitancji** układu **o m**wejściach i p-wyjściach $\min(m, p) \geq 2$ jest w postaci $T = \frac{1}{d}$ (d jest **najmniejszym wspólnym mianownikiem), to** każdy **niezerowy minor stopnia drugiego macierzy 'P jest podzielny bez reszty przez d wtedy i tylko wtedy, gdy q=d, przy czym q jest wielomianem McMillana macierzy T.** Jeżeli **para (A, b)** układu **o jednym** wejściu **jest sterowalna, to macierz** układu zamkniętego **A,. = A + BK (k jest wektorem** wzmocnień)jest **cykliczna wtedy i tylko wtedy, gdy macierz A jest** również **cykliczna.** Jeżeli **para (A,B)** układu **o** m-wejściach **jest sterowalna i macierz A nie jest cykliczna, to istnieje macierz** sprzężeń **zwrotnych K taka,** że **macierz A, = A + BK jest cykliczna.** Jeżeli **para (A,B) jest niesterowalna i macierz A jest niecykliczna, to istnieje macierz** sprzężeń **zwrotnych K taka,** że **macierz A, = A + BK jest**

SESJA- **f AUTOMATYZACJA**, ROBOTYZACJA, MONITOROWANIE **81**

cykliczna wtedy i tylko wtedy, gdy podmacierz A_3 (w (50)) części **niesterowalnej** układu **jest cykliczna.**

1. INTRODUCTION

In the monograph [5] Rosenwasser and Lampe have introduced the notion of the simple **matrix (einfache Matrix, which is equivalent to the cyclic matrix [4]) and the notion of the normal matrix (normale Matrix). They have shown that if the normal transfer matrix is written** in the standard form $T = \frac{P}{I}$ (*d* is the minimal common denominator), then every second **d order nonzero minor of P is divisible by d with zero remainder. Some implications of this approach to electrical circuits have been discussed in [2]. In this paper it will be shown that every second order nonzero minor of the polynomial matrix** $P_A\left[\left[I_n s - A\right]^{-1} = \frac{P_A}{d}, A \in \mathbb{R}^{n \times n}, n \ge 2\right)$ is divisible (with zero remainder) by the polynomial d

if and only if the characteristic polynomial $\varphi(s) = det[I_n s - A]$ is equal to the minimal polynomial $\Psi(s)$ of A. If the transfer matrix of m-inputs and p-outputs $(\min(m, p) \ge 2)$ linear system is written in the standard form $T = \frac{P}{d}$ (*d* is the minimal common denominator), then every second order nonzero minor of P is divisible by d if and only if $q = d$, where q is the McMillan polynomial of T. If the pair (A, b) of single input system is controllable then the closed-loop matrix $A_c = A + bk$ (k is a gain matrix) is cyclic if and only if the matrix A is also cyclic. If the pair (A, B) of m-input system is controllable and A is not cyclic then there exists a feedback gain matrix K such that $A_c = A + BK$ is cyclic. If the pair (A, B) is uncontrollable and A is not cyclic then there exists a feedback gain matrix K such that $A_c = A + BK$ is cyclic if and only if the submatrix $A₃$ of (50) of the uncontrollable part **of the system is cyclic.**

2. PRELIMINARIES

Let $R^{m \times n}$ be the set of $m \times n$ real matrices and $R^n = R^{n \times 1}$. **Consider the linear continuous-time system**

$$
\dot{x} = Ax + Bu \tag{1a}
$$

$$
y = Cx + Du \tag{1b}
$$

where $x = x(t) \in R^n$ is the state vector, $u = u(t) \in R^m$ and $y = y(t) \in R^p$ are the input and output vectors, respectively and $A \in R^{n \times n}$, $B \in R^{n \times m}$, $C \in R^{p \times n}$, $D \in R^{p \times m}$. **, The transfer matrix of the system (1) is given by**

$$
T(s) = C[I_n s - A]^{-1} B + D
$$
 (2)

which can be written in the standard form

$$
T(s) = \frac{P(s)}{d(s)}\tag{3}
$$

 $\overline{w_{\text{target}}^{w_{\text{true}}}}$ $P \in R^{p \times m}[s]$, $R^{p \times m}[s]$ is the set of $p \times m$ polynomial matrices and $d(s)$ is the minimal : common denominator of all entries of $T(s)$.

In what follows the following elementary row or column operations will be used $[1,3]$:

n: Multiplication of any row (column) by any nonzero number (scalar).

2. Addition of any row (column) multiplied by a polynomial to an other row (column).

³3. Interchange of any rows (columns).

 $\sim \frac{1}{2} \frac{d}{d}$

 \tilde{q}_1 \mathbb{F}_2 .

 $\frac{1}{2}$ $\frac{1}{2}$

Using elementary row and column operations we may transform any polynomial matrix $P \in R^{p \times m}[s]$ to its Smith canonical form [3,4]

$$
P_{S}(s) = diag[i_{1}(s), i_{2}(s), ..., i_{r}(s), 0, ..., 0] \in R^{p \times m}[s]
$$
\n(4)

where $i_1(s),..., i_r(s)$ are monic invariant polynomials satisfying the divisibility condition $i_{k+1}^{[k]}(s) | i_k(s)$, i.e. $i_{k+1}(s)$ is divisible with zero remainder by $i_k(s), k = 1, ..., r-1$ and $r = rank P(s)$.

The invariant polynomials can be determined by the relation 40

$$
i_k(s) = \frac{D_k(s)}{D_{k-1}(s)} \quad (D_0(s) = 1), \ k = 1,...,r
$$
 (5)

where $D_k(s)$ is the greatest common divisor of all the $k \times k$ minors of $P(s)$.

The characteristic polynomial $\varphi(s) = \det[I_n - A]$ of the matrix $A \in R^{n \times n}$ and its minimal polynomial $\Psi(s)$ are related by [1]

$$
\Psi(s) = \frac{\varphi(s)}{D_{n-1}(s)}\tag{6}
$$

From (4)-(6) it follows that $\Psi(s) = \varphi(s)$ if and only if

$$
D_1(s) = D_2(s) = \dots = D_{n-1}(s) = 1
$$
\n(7)

A matrix $A \in \mathbb{R}^{n \times n}$ satisfying (7) (or equivalently $\Psi(s) = \varphi(s)$) is called cyclic (or normal [5]).

3, DIVISIBILITY OF SECOND ORDER MINORS OF CYCLIC MATRICES

For any $A \in R^{n \times n}$ the inverse matrix $[Is - A]^{-1}$ can be written in the form

$$
\left[Is - A\right]^{-1} = \frac{P_A}{d} \tag{8}
$$

Where $P_A = P_A(s) \in R^{n \times n}[s]$ and $d = d(s)$ is the minimal common denominator.

Theorem 1. Let $A \in \mathbb{R}^{n \times n}$ and $n \ge 2$. Then every second order nonzero minor of P_A is divisible (with zero remainder) by d if and only if the characteristic polynomial $\varphi(s) = \det[s - A]$ is equal to the minimal polynomial of A, i.e. $\varphi(s) = \Psi(s)$.

SESJA I AUTOMATYZACJA, ROBOTYZACJA, MONITOROWANIE 83

3

Proof. It is well known that any square matrix is similar to its Jordan canonical form, that is, there exists a non-singular matrix $T \in R^{n \times n}$ such that

$$
J_A = TAT^{-1} = diag[J_{11}(s_1),..., J_{m_1k_1}(s_1), J_{21}(s_2),..., J_{m_1k_2}(s_2),..., J_{m_qk_q}(s_q)]
$$
(9a)

where

$$
J_m(s) = \begin{bmatrix} s & 1 & 0 & \cdots & 0 & 0 \\ 0 & s & 1 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & s & 1 \\ 0 & 0 & 0 & \cdots & 0 & s \end{bmatrix} \in R^{m \times m}[s]
$$
(9b)

 $s_1, s_2, ..., s_g$ are the distinct eigevalues of A and the multiplicity of s_j is $m_{i1} + m_{j2} + \cdots + m_{jk} = m_j, j = 1, ..., q$. From (9a) it follows that

$$
\det[I_n s - J_A] = \det[I_n s - A] = \varphi(s) \tag{10}
$$

If (7) holds then

 $J_A = diag[J_{m_1}(s_1), J_{m_2}(s_2),..., J_{m_q}(s_q)]$ $(m_1 + m_2 + \cdots + m_q = n)$ (11) and from (9a) we obtain

$$
[I_{n}s - A]^{-1} = [I_{n}s - T^{-1}J_{n}T]^{-1} = T^{-1}[I_{n}s - J_{n}]^{-1}T =
$$

$$
= diag \{ [I_{m_{1}}s - J_{m_{1}}(s_{1})]^{-1}, [I_{m_{1}}s - J_{m_{1}}(s_{2})]^{-1}, \cdots, [I_{m_{n}}s - J_{m_{n}}(s_{q})]^{-1} \} =
$$

$$
= diag \{ \frac{adj[I_{m_{1}}s - J_{m_{1}}(s_{1})]}{d_{1}}, \frac{adj[I_{m_{1}}s - J_{m_{1}}(s_{2})]}{d_{2}}, \cdots, \frac{adj[I_{m_{n}}s - J_{m_{n}}(s_{q})]}{d_{q}} \}
$$
(12)

where $d_i = (s - s_j)^{m_i}$, $j = 1, ..., q$ and $d = d_1 d_2 \cdots d_q$.

From (12) it follows that it is enough to show that every second order nonzero minor of the adjoint matrix $adj[I_{m_j}s - J_{m_j}(s_j)]$ is divisible by d_j for $j = 1, ..., q$. Taking into account that

$$
adj[I_{m_j}s - J_{m_j}(s_j)] = adj\begin{bmatrix} s - s_j & -1 & 0 & \cdots & 0 & 0 \\ 0 & s - s_j & -1 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & s - s_j & -1 \\ 0 & 0 & 0 & \cdots & 0 & s - s_j \end{bmatrix} = (13)
$$

$$
= \begin{bmatrix} (s-s_j)^{m_j-1} & (s-s_j)^{m_j-2} & (s-s_j)^{m_j-3} & \cdots & s-s_j & 1 \\ 0 & (s-s_j)^{m_j-1} & (s-s_j)^{m_j-2} & \cdots & (s-s_j)^2 & s-s_j \\ 0 & 0 & 0 & \cdots & (s-s_j)^{m_j-1} & (s-s_j)^{m_j-2} \\ 0 & 0 & 0 & \cdots & 0 & (s-s_j)^{m_j-1} \end{bmatrix}
$$

it is easy to check that every nonzero second order minor of (13) is divisible by $d_j = (s - s_j)^{m_j}, j = 1, ..., q$.

If $\varphi(s) \neq \Psi(s)$ then for at least one eigenvalue, let say s_j , we have (for $m_{j_1} > m_{j_2}$) $J(s_i) = diag[J_{m_{ii}}(s_i), J_{m_{ii}}(s_j)]$

and

$$
\begin{aligned}\n\left[Is - J(s_j)\right]^{-1} &= diag\left\{I_{m_{j1}}s - J_{m_{j1}}(s_j)\right\}^{-1}, \left[I_{m_{j1}}s - J_{m_{j2}}(s_j)\right]^{-1}\right\} = \\
&= \frac{1}{d_{m_{j1}}} diag\left\{adj\left[I_{m_{j1}}s - J_{m_{j1}}(s_j)\right]\left(s - s_j\right)^{m_{j1} - m_{j2}} adj\left[I_{m_{j2}}s - J_{m_{j2}}(s_j)\right]\right\}\n\end{aligned} \tag{14}
$$

where $d_{m_{i}} = (s - s_{i})^{m_{i1}}$ and the adjont matrices $adj[I_{m_{i1}} s - J_{m_{i1}}(s_{i})]$, $adj[I_{m_{i1}} s - J_{m_{i2}}(s_{i})]$ are defined in the same way as (13).

It is easy to check that for example the second order minor 1 0 $(s-s_j)^{m_{j2}}(s-s_j)^{m_{j2}-1}$ of the

matrix

 $diag\{adj[I_{m_i}s - J_{m_i}(s_j)],(s - s_j)^{m_i-m_i}adj[I_{m_i}s - J_{m_i}(s_j)]\}$ is not divisible by d_{m} .

Remark 1. Any nondiagonal matrix $A = [a_{ij}] \in R^{n \times n}$ for $n = 2$ is cyclic since $D_{n-1}(s)$ of $[I_n s-A]$ is for $a_{12} \neq 0$ or $a_{21} \neq 0$ a nonzero scalar.

Theorem 2. A matrix $A = [a_{ij}] \in R^{n \times n}$ is cyclic if

$$
a_{ij}\begin{cases} =0 \quad \text{for} \quad j>i+1\\ \neq 0 \quad \text{for} \quad j=i+1 \end{cases} i, j=1,...,n \tag{15a}
$$

$$
\quad\text{or}\quad
$$

$$
a_{ij} = \begin{cases} = 0 & \text{for } i > j + 1 \\ \neq 0 & \text{for } i = j + 1 \end{cases} \quad i, j = 1,...,n
$$
 (15b)

Proof. If (15a) holds then the minor M_{n} obtained by deleting of the first column and the nth row of the matrix $[I_n s - A]$ is equal to $M_{n1} = a_{12}a_{23} \cdots a_{n-1,n} \neq 0$. Hence $D_{n-1}(s) = 1$. In this case from (6) we obtain $\varphi(s) = \Psi(s)$. The proof for (15b) is similar (dual). \Box In particular case from Theorem 2 it follows that the Frobenius matrix

$$
A_F = \begin{bmatrix} 0 & \overline{1} & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \overline{0} & 0 & 0 & \cdots & 1 \\ a_0 & a_1 & a_2 & \cdots & a_{n-1} \end{bmatrix} \text{ or } A_F^T = \begin{bmatrix} 0 & 0 & \cdots & 0 & a_0 \\ 1 & 0 & \cdots & 0 & a_1 \\ 0 & 1 & \cdots & 0 & a_2 \\ \overline{0} & 0 & \cdots & 1 & a_{n-1} \end{bmatrix}
$$
(16)

is cyclic [I].

4. DIVISIBILITY OF SECOND ORDER MINORS OF TRANSFER MATRICES

The transfer matrix (2) of (1) can be always written in the form (3). If the pair (A, B) is reachable (controllable) and the pair (A, C) is observable then

$$
P(s) = C \, adj[I_n s - A]B + Dd \text{ and } d = \det[I_n s - A]
$$
 (17)

If $m \ge p \ (p \ge m)$ and $rank C = p (rank B = m)$ then $r = rank P(s) = p(m)$ and the Smith canonical form (4) of $P(s)$ is equal to

$$
P_S(s) = UP(s)V = \begin{bmatrix} i_1(s) & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & i_2(s) & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & i_p(s) & 0 & \cdots & 0 \end{bmatrix} \in R^{p \times m}[s] \tag{18}
$$

where $U = U(s) \in R^{p \times p}[s], V = V(s) \in R^{m \times m}[s]$ are unimodular matrices of elementary row and column operations, respectively.

From (18) and (3) we have the McMillan canonical form of $T(s)$ [3,4]

$$
T_M(s) = \frac{P_S(s)}{d(s)} = \frac{UP(s)V}{d(s)} = \begin{vmatrix} \frac{n_1}{q_1} & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & \frac{n_2}{q_2} & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & \frac{n_p}{q_p} & 0 & \cdots & 0 \end{vmatrix}
$$
(19)

where $\frac{i_k(s)}{k} = \frac{n_k(s)}{k}$ for $k = 1,\dots, p$ $(n_1 = i_1, q_1 = d), n_k = n_k(s)$ and $q_k(s)$ are factor coprime $\overline{d(s)}$ – $\overline{q_k(s)}$

polynomials such that $n_k | n_{k+1}$ and $q_{k+1} | q_k, k = 1, ..., p-1$. The polynomial

$$
q(s) = q_1 q_2 \dots q_p \tag{20}
$$

is called the McMilan polynomial of $T(s)$.

From (18) – (20) it follows that deg $q(s) \ge \deg d(s)$ and

 $q(s) = d(s)$ if and only if $q_k(s) = 1$ for $k = 2,...,p$ $(q_1(s) = d(s))$ In the proof of the following theorem the Binet — Cauchy lemma will be used [1]. (21)

Lemma. Let $C = AB$, where $A \in R^{m \times n}$, $B \in R^{n \times p}$. Then the minor of the q order $(q \le \min(m, p))$ of the matrix C is given by the formula

$$
C_{j_1j_2...j_q}^{i_1i_2...i_q} = \sum_{1 \le k_1 < \dots < k_q \le n} A_{k_1k_2...k_q}^{i_1i_2...i_q} B_{j_1j_2...j_q}^{k_1k_2...k_q}
$$
 (22)

where $A_{k_1k_2\ldots k_q}^{l_1l_2\ldots l_q}$ is the minor consisting of rows i_1, i_2, \ldots, i_q and columns j_1, j_2, \ldots, j_q of the matrix A. The minors $B_{j_1j_2...j_q}^{k_1k_2...k_q}$ and $C_{j_1j_2...j_q}^{k_1k_2...k_q}$ are defined in the same way. 1.

Theorem 3. Let min $(m, p) \ge 2$ and let $T(s)$ be given in the form (3). Then every second order nonzero minor of the polynomial matrix $P(s)$ is divisible (with zero remainder) by $d(s)$ if and only if $q(s) = d(s)$.

Proof. Sufficiency. If $q(s) = d(s)$ then by (21) $q_k(s) = 1$ for $k = 2,..., p$ and (19) takes the form

$$
T_M(s) = \frac{P_M(s)}{d(s)}\tag{23}
$$

and

where

$$
T(s) = U^{-1}(s)T_M(s)V^{-1}(s) = \frac{P(s)}{d(s)}
$$

$$
P_M(s) = \begin{bmatrix} i_1(s) & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & i_1(s)t_2(s)d(s) & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & i_1(s)t_p(s)d(s) & 0 & \cdots & 0 \end{bmatrix}
$$
(24)

and

 $P(s) = U^{-1}(s)P_{\nu}(s)V^{-1}(s)$

 $U^{-1}(s)$ and $V^{-1}(s)$ are unimodular matrices and some of the polynomials $t_k(s)$, $k = 2,..., p$ may be equal to 1.

It is easy to see that every second order nonzero minor of $P_M(s)$ is divisible by $d(s)$. Applying Lemma to the matrix $P(s) = U^{-1}(s)P_M(s)V^{-1}(s)$ we conclude that every nonzero second order minor of $P(s)$ is divisible by $d(s)$.

Necessity. If every nonzero second order minor of $P(s)$ is divisible by $d(s)$ then by Lemma every second order nonzero minor of $P_M(s)$ is also divisible by $d(s)$ since $U^{-1}(s)$ and $V^{-1}(s)$ are unimodular matrices. This implies that the matrix $P_M(s)$ has the form (24) and by (23) we obtain $q_k(s) = 1$ for $k = 2,..., p$. In this case from (21) we have $q(s) = d(s)$.

Remark 2. The Theorem 3 can be also proved by the use of Theorem 1 and Lemma.

Example 1. Consider the transfer matrix

$$
T(s) = \begin{bmatrix} \frac{1}{s+1} & 0\\ 0 & \frac{1}{s+2} \end{bmatrix} = \frac{1}{(s+1)(s+2)} \begin{bmatrix} s+2 & 0\\ 0 & s+1 \end{bmatrix}
$$
 (25)

In this case

and

$$
P(s) = \begin{bmatrix} s+2 & 0\\ 0 & s+1 \end{bmatrix} \tag{26}
$$

The canonical Smith form of (26) is equal to

$$
P_S(s) = \begin{bmatrix} 1 & 0 \\ 0 & (s+1)(s+2) \end{bmatrix} \tag{27}
$$

and the canonical McMillan form

 $T_M(s) = \begin{cases} (s+1)(s) \\ 0 \end{cases}$ O

 $d(s) = (s + 1)(s + 2)$

Hence

 $q(s) = (s+1)(s+2) = d(s)$ It is easy to see that det $P(s) = d(s)$ is divisible by $d(s)$.

Example 2. Consider the transfer matrix

SESJA I AUTOMATYZACJA, ROBOTYZACJA, MONITOROWANIE 87

$$
T(s) = \begin{bmatrix} \frac{s+2}{(s+1)^2} & 0\\ 0 & \frac{1}{s+1} \end{bmatrix} = \frac{1}{(s+1)^2} \begin{bmatrix} s+2 & 0\\ 0 & s+1 \end{bmatrix}
$$
 (28)

In this case $d(s) = (s+1)^2$ and $P(s)$, $P_s(s)$ are given by (26) and (27), respectively. Thus the canonical McMillan form is equal to

$$
T_M(s) = \begin{bmatrix} \frac{1}{(s+1)^2} & 0\\ 0 & \frac{s+2}{s+1} \end{bmatrix}
$$

Hence $q(s) = (s + 1)^3 \neq d(s)$.

It is easy to see that det $P(s) = (s+1)(s+2)$ is not divisible by $d(s) = (s+1)^2$.

5. SYSTEMS WITH STATE-FEEDBACKS.

Let us consider the system (1) with the state-feedback

$$
u = v - Kx \tag{29}
$$

where $v \in R^m$ is the new input vector and $K \in R^{m \times n}$. Substitution of (29) into (10) yields

$$
\dot{x} = A_c x + Bv \tag{30}
$$

where

'fiP1' '

$$
A_c = A + BK \tag{31}
$$

5.1. Single-input systems

Consider the single input ($m=1$) system (1) with (29), $B = b$ and $K = k \in \mathbb{R}^{1 \times n}$.

Theorem 4. The pair (A,b) is controllable only if the characteristic polynomial $\varphi(s) = \det[s - A]$ is equal to the minimal polynomial $\Psi(s)$ of A, i.e. $\varphi(s) = \Psi(s)$.

Proof. It is well-known [3,4] that the pair (A,b) is controllable if and only if $rank[b, Ab, ..., A^{n-1}b] = n$ (31)

If $\Psi(s) \neq \varphi(s)$ then from (6) we have deg $\Psi(s) = n_1 < n$.

Let $\Psi(s) = s^{n_1} + a_{n_1-1} s^{n_1-1} + \cdots + a_1 s + a_0$. Then $A^{n_1} = -a_{n_1-1} A^{n_1-1} - \cdots - a_1 A - a_0 I_n$ and all columns $A^{n_1}b,..., A^{n-1}b$ in the matrix $[b, Ab,..., A^{n-1}b]$ are linearly dependent on $b, Ab,..., A^{n_1-1}b$.

Therefore, the condition (31) can be satisfied only if $\oint g(s) = \varphi(s)$. \Box

It is also well-known [3,4] that the pair (A_c, b) is controllable if and only if the pair (A, b) is **controllable.**

Theorem 5. Let the pair (A,b) be controllable. Then the matrix A_c of the closed-loop **system (30) is cyclic if and only if the matrix A of (1) is cyclic.**

Proof. Necessity. If the pair (A,b) is controllable then the pair (A_c,b) is also controllable for any feedback gain matrix k. By Theorem 4 the controllability of the pair (A_c, b) implies that A_i is cyclic.

Sufficiency. If the pair (A,b) is controllable then there exists a non-singular matrix T such that $[3,4]$

$$
\overline{A} = TAT^{-1} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-1} \end{bmatrix}, \overline{b} = Tb = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}
$$
(32)

The matrix \overline{A} is cyclic with $\Psi(s) = \det[Is - \overline{A}] = \det[Is - A]$. $Using (32)$ we may write

$$
A_c = A + bk = T^{-1}(\overline{A} + \overline{b}\overline{k})T
$$
\n(33)

$$
\vec{k} = kT^{-1} = [\vec{k}_1, \vec{k}_2, ..., \vec{k}_n]
$$
\n(34)

Helice the matrix

 \cdot where

$$
\overline{A}_{c} = \overline{A} + \overline{b}\,\overline{k} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 1 \\ \overline{k}_{1} - a_{0} & \overline{k}_{2} - a_{1} & \overline{k}_{3} - a_{2} & \cdots & \overline{k}_{n} - a_{n-1} \end{bmatrix}
$$
 (35)

is typelic. From (33) it follows that $\det[s - A_c] = \det[s - \overline{A_c}]$ and A_c is also cyclic. \Box Therefore, we have the following corollary

Corollary 1. If the pair (A,b) is controllable the cyclicity of the matrix A is invariant under the state-feedback.

If the pair (A,b) is not controllable and A is not cyclic then as shows the following example it^h possible to choose the feedback gain matrix so $A_c = A + bk$ is cyclic.

Example 1. The pair

 $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $0 \quad 1 \mid b = 1$ (36)

not controllable and A is not cyclic since $\varphi(s) = \begin{vmatrix} s-1 & 0 \\ 0 & s \end{vmatrix}$ $\begin{vmatrix} 1 & 0 \\ 0 & s-1 \end{vmatrix} = (s-1)^2$ and $\Psi(s) = s-1$. It easy to verify that for $k = [0 \ 1]$ the closed-loop matrix $A_c = A + bk = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ is cyclic

$$
\mathcal{L}(s) = \varphi(s) = (s+1)(s+2) \, .
$$

4,

 $\prod_{i=1}^{n}$ general case when the single-input system (1) is not controllable there exists a non-singular $\frac{1}{2}$ Tratrix T such that [3,4]

SESJA I AUTOMATYZACJA, ROBOTYZACJA, MONITOROWANIE 89

$$
\overline{A} = TAT^{-1} = \begin{bmatrix} A_1 & A_2 \\ 0 & A_3 \end{bmatrix}, \overline{b} = Tb = \begin{bmatrix} b_1 \\ 0 \end{bmatrix}, \quad A_1 \in R^{r \times r}, b_1 \in R^r
$$
\n
$$
A_3 \in R^{(n-r) \times (n-r)} \tag{37}
$$

- 1

J

where the pair (A_1, b_1) is controllable and it has the canonical form (32) and $r = rank[b, Ab, ..., A^{n-1}b] < n$.

Theorem 6. Let the pair (A, b) be uncontrollable and A be not cyclic. Then there exists a feedback gain matrix k such that $A_c = A + bk$ is cyclic if and only if the matrix A_3 is cyclic.

Proof. Sufficiency. If A_3 is cyclic, A_1 has the Frobenius form and A is not cyclic

then the minimal polynomials $\Psi_1(s)$ and $\Psi_3(s)$ of A_1 and A_3 have at least one common factor. The pair (A_1, b_1) is controllable. Thus it is possible to choose k so that the matrix $A_1 + b_1 k$ has a minimal polynomial which has no common factors with $\Psi_3(s)$. In this case the matrix $\overline{A}(A)$ is cyclic.

Necessity. Follows immediately from the fact that $\overline{A}(A)$ is cyclic only if A_3 is cyclic. \Box

Example 2. Consider the single-input system (1) with

$$
A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ -4 & -8 & -5 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 & -2 \end{bmatrix}, b = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}
$$
(38)

It is easy to check that the pair is not controllable and it has already the desired form (37) with

$$
A_1 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -4 & -8 & -5 \end{bmatrix}, A_2 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & -1 \end{bmatrix}, A_3 = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}, b_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
$$
(39)

The matrices A_1 and A_3 are cyclic but their minimal polynomials $\Psi_1(s) = \det[s - A_1] = (s + 1)(s + 2)^2$, $\Psi_1(s) = \det[s - A_1] = (s + 1)^2$ have common factor $(s+1)$. Therefore, the matrix A is not cyclic.

The conditions of Theorem 6 are satisfied and there exists a feedback gain matrix $k = [k_1 \ k_2 \ k_3 \ k_4 \ k_5]$ such that $A_c = A + bk$ is cyclic. The gain matrix k should be chosen so that the minimal polynomial of $A_{c1} = A_1 + b_1 \overline{k}, \overline{k} = [k_1 \overline{k}_2 \overline{k}_3]$ has no common factors with $\Psi_1(s)$. Let the desired minimal polynomial of A_{c1} be $\Psi_{c1}(s) = (s+2)^3$. Then

$$
A_{c1} = A_1 + b_1 \overline{k} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -4 & -8 & -5 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} [-4, -4, -1] = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -8 & -12 & -6 \end{bmatrix}
$$

$$
k = [\overline{k} \ k_4 \ k_5] = [-4, -4, -1, 0, 1]
$$

and

1.0

i I 1 I 11 1 1

11 hh

$$
A_c = A + bk = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ -8 & -12 & -6 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 & -2 \end{bmatrix}
$$
(40)

It is easy to check that the matrix (40) is cyclic with the minimal polynomial

4.2. Multi-input systems

t.

ę.

wher.

en

 $\text{Define } \mathbb{R}^2$

Consider the m -inputs system (1) with (29).

If the pair (A,b) is controllable then there exists a non-singular matrix T such that [3,4]

$$
\overline{A} = TAT^{-1} = \begin{bmatrix} A_{11} & \cdots & A_{1m} \\ A_{m1} & \cdots & A_{mm} \end{bmatrix}, \overline{B} = TB = \begin{bmatrix} B_1 \\ \vdots \\ B_m \end{bmatrix}, A_{ij} \in R^{d_i \times d_j}, B_i \in R^{d_i \times m} \tag{41a}
$$

 $=\left\{\begin{matrix} 1 & -a, \\ 1 & -a, \end{matrix}\right\}$ $\left[\begin{array}{c} 0 \\ 0 \end{array}\right]$ $\begin{vmatrix} -a_{ii} \end{vmatrix}$ for for $i = j$
 $R = \begin{bmatrix} 0 \\ n \end{bmatrix}$ $a_{ij} = [a_0^{ij} a_1^{ij}]$ $i \neq j$ $b_i = [0 \cdots 0 \; 1 \; b_{i,j+1} \cdots b_{im}]$ (41b)

and $d_{ij}^{r_i}..., d_m$ are the controllability indexes satisfying $\sum_{i=1}^{m_i} d_i = n$.

Theorem 7. Let A be not cyclic. Then there exists a feedback gain matrix K such that BK is cyclic if the pair (A, B) is controllable.

Proof, If the pair (A, B) is controllable then the pair can be transformed to its canonical form (41) _k: Let ϕ

$$
\hat{B} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}^{-1} = \begin{bmatrix} 1 & b_{12} & \cdots & b_{1m} \\ 0 & 1 & \cdots & b_{2m} \\ 0 & 0 & \cdots & 1 \end{bmatrix}^{-1}
$$
(42)

$$
\widetilde{B} = \overline{B}\widehat{B} = diag[\widetilde{b}_1, ..., \widetilde{b}_m], \widetilde{b}_i = [0 \cdots 0 \ 1]^T \in R^{d_i}
$$
\n(43)

$$
\overline{K} = \hat{B}^{-1} K T^{-1} = \begin{bmatrix} -a_{n_1} + e_{n_2 + 1} \\ -a_{n_{n-1}} + e_{n_{n-1} + 1} \\ -a_{n_n} - d \end{bmatrix}
$$
(44)

where $n_i = \sum_{k=1}^{i} d_k$, a_{n_i} is the n_i -th row of \overline{A}, e_i is the *i*-th row of I_n and

Sesjøï Automatyzacja, robotyzacja, monitorowanie – – – – – – 91

$$
d = [d_0, d_1, ..., d_{n-1}]
$$
\n(45)

7

(46)

Using (42)-(45) it is easy to verify that

$$
A_c = T(A+BK)T^{-1} = \overline{A} + \overline{B}KT^{-1} = \overline{A} + \overline{B}\hat{B}\hat{B}^{-1}KT^{-1} = \overline{A} + \overline{B}\overline{K} =
$$

O 1 O $0 \qquad 0 \qquad 1 \qquad \cdots \qquad 0$ $0 \quad 0 \quad 0 \quad \cdots \quad 1$ $-d_1$ $-d_2$

The matrix (46) is cyclic.

The desired feedback gain matrix is given by the formula $K = \hat{B}\overline{K}T$ (47)

which follows from (44). \square

Remark 3. Note that for different (45) we obtain different matrices (46). Hence there exist many gain matrices K solving the problem.

Example 3. Consider the system (1) with

$$
A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ -1 & -2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & -4 & -8 & -5 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}
$$
(48)

The pair (48) is controllable and has already the form (41) but the matrix \vec{A} is not cyclic. In this case $d_1 = 2, d_2 = 3, n_1 = d_1, n_2 = d_1 + d_2 = 5, T = I_5, \overline{A} = A$ and $\overline{B} = B$.

To find a feedback gain matrix $K = [k_{ij}] \in R^{2 \times 5}$ such that $A_c = A + BK$ is cyclic we compute using (42), (43), (44) and (47)

$$
\hat{B} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}, \tilde{B} = \overline{B}\hat{B} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}
$$

\n
$$
\overline{K} = \begin{bmatrix} -a_n + e_3 \\ -a_n - d \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 & -1 & 0 \\ -d_0 & -d_1 & 4 - d_2 & 8 - d_3 & 5 - d_4 \end{bmatrix}
$$

\n
$$
K = \hat{B}\overline{K}T = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 & -1 & 0 \\ -d_0 & -d_1 & 4 - d_2 & 8 - d_3 & 5 - d_4 \end{bmatrix} = \begin{bmatrix} 1 + d_0 & 2 + d_1 & d_2 - 3 & d_3 - 9 & d_4 - 5 \\ -d_0 & -d_1 & 4 - d_2 & 8 - d_3 & 5 - d_4 \end{bmatrix}
$$
(49)
\n(49) we obtain the cyclic matrix

Using (48) and $($

92 AUTOMATION 2002

and

$$
\begin{array}{c}\n\hline\n\end{array}
$$

$$
A_c = A + BK = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ -d_0 & -d_1 & -d_2 & -d_3 & -d_4 \end{bmatrix}
$$

If the pair (A, B) is uncontrollable then there exist a non-singular matrix T such that [3,4]

$$
\overline{A} = TAT^{-1} = \begin{bmatrix} A_1 & A_2 \\ 0 & A_3 \end{bmatrix}, \ \overline{B} = TB = \begin{bmatrix} B_1 \\ 0 \end{bmatrix}, \ A_1 \in R^{r \times r}, B_1 \in R^{r \times m}
$$
\n
$$
(50)
$$

where the pair (A_1, b_1) is controllable and it has the canonical form (41) and $r = rank[A, AB, ..., A^{n-1}B] < n$.

Theorem 8. Let the pair (A, B) be uncontrollable and let the matrix A be not cyclic. Then there exists a feedback gain matrix K such that $A_c = A + BK$ is cyclic if and only if the submatrix A_3 is cyclic.

The proof is similar to the proof of Theorem 6.

6. Concluding remarks

It has been show that every second order nonzero minor of the polynomial matrix P_A of (8) is divisible (with zero remainder) by the polynomial d if and only if the characteristic polynomial $\varphi(s)$ is equal to the minimal polynomial $\Psi(s)$ of A. If the transfer matrix T has the form (3) then every second order nonzero minor of the polynomial P is divisible by d if and only if $q = d$ (q is the McMillan polynomial of T). If the pair (A, b) of single-input system is controllable then the closed-loop matrix A_c is cyclic if and only if A is cyclic. If the pair (A, B) of m-input system is controllable and A is not cyclic then there exists a feedback gain matrix K such that $A_c = A + BK$ is cyclic. If the pair (A, B) is uncontrollable and A is not cyclic then there exists a feedback gain matrix K such that $A_c = A + BK$ is cyclic if and only if the submatrix A_3 of (50) of the uncontrollable part of the system is cyclic.

The considerations with slight modifications are also valid for discrete-time linear systems. An extension of there considerations for singular linear systems will be presented in a next paper. An open problem is an extension of there considerations for standard and singular 2D linear systems [3].

REFERENCES

- **[1] F.R. Gantmacher, Theory of Matrices, Chelsea, New York 1959.**
- **[2] T. Kaczorek, Divisibility of minors of transfer matrices in electrical circuits,** Przegląd **Elektrotechniczny, 10, 2001 (in Polish).**
- **[3] T. Kaczorek, Linear Control Systems, vol. 1 and 2, Research Studies Press, J. Wiley, New York 1992-1993.**
- **[4] T. Kailath, Linear Systems, Englewod Cliffs. Printice Hall 1980.**
- [5] E.N. Rosenwasser and B.P. Lampe, Algebraische Methoden zur Theorie der Mehrgrößen **— Abtastsysteme, Universitat Rostock, 2000.**