-

TP rvom, fc SR

R I TN FTTS O  pe Tyrn R

i
*

profdr hab. inz. Tadeusz Kaczorek

| polifechnika Warszawska

3 ¥

& i?;
e
ek

.g,

T

X
4 i
4

INFLUENCE OF THE STATE-FEEDBACK - .
ON CYCLICITY OF LINEAR SYSTEMS

Abstract. It is shown that every second order nonzero minor of the
polynomial matrix PA[[I,,S—A]" =%‘,AeR"”,n22) is divisible (with

zero remainder) by the polynomial d if and only if the characteristic
polynomial ¢(s) =det[1,,s—A] is equal to the minimal polynomial ¥(s) of
A . If the transfer matrix of m-inputs and p-outputs min(m,p) 22 linear

. . ; P . ..
system is written in the standard form T = = (d is the minimal common

denominator), then every second order nonzero minor of P is divisible by d
if and only if g =d, where q is the McMillan polynomial of T. If the pair
(4,b) of single-input system is controllable then the closed-loop matrix
A. = A+ bk (kis a gain matrix) is cyclic if and only if the matrix A is also
cyclic. If the pair (A,B) of m-input system is controllable and A is not
cyclic then there exists a feedback gain matrix K such that A. = A+ BK is
cyclic. If the pair (A,B) is uncontrollable and A is not cyclic then there
exists a feedback gain matrix K such that A, = A+ BK is cyclic if and only

if the submatrix 4, of (50) of the uncontrollable part of the system is cyclic.

Streszczenie. W pracy wykazano, ie kazdy niezerowy minor stopnia
drugiego macierzy PA([["S - A]_l = %—, AeR™ n> 2) Jjest podzielny bez

reszty przez wielomian d wredy i tylko weedy,
charakterystyczny  @(s) = det[[ns - A] jest  rowny
minimalnemu \Y(s) macierzy A. Jezeli macierz transmitancji uktadu o m-

gdy wielomian
wielomianowi

wejsciach i p-wyjSciach min(m,p)22 jest w postaci T:éi d jest

najmniejszym wspélnym mianownikiem), to kazdy niezerowy minor stopnia
drugiego macierzy P jest podzielny bez reszty przez d wiedy i tylko wtedy,
gdy q=d, przy czym q jest wielomianem McMillana macierzy T. Jezeli para
(A,b) ukladu o jednym wejSciu jest sterowalna, to macierz ukladu
zamhnigtego A, = A+ BK (kjest wektorem wzmocnien)jest cykliczna wredy
i ko wtedy, gdy macierz A jest rowniez cykliczna. Jezeli para (A B)
ukladu o m-wejsciach jest sterowalna i macierz A nie jest cykliczna, to
istnieje macierz sprzezen zwrotnych K taka, ze macierz A, = A+ BK jest
cykliczna. Jezeli para (A, B) jest niesterowalna i macierz A jest niecykliczna,
to istnieje macierz sprzezen zwrotnych K taka, ze macierz A, = A+ BK jest
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cykliczna wtedy i tylko wtedy, gdy podmacierz A, (w (30)) czeSci
niesterowalnej ukladu jest cykliczna.

1. INTRODUCTION

In the monograph [5] Rosenwasser and Lampe have introduced the notion of the simple
matrix (einfache Matrix, which is equivalent to the cyclic matrix [4]) and the notion of the
normal matrix (normale Matrix). They have shown that if the normal transfer matrix is written

. P . .. .
in the standard form T :E (d is the minimal common denominator), then every second

order nonzero minor of P is divisible by d with zero remainder. Some implications of this
approach to electrical circuits have been discussed in [2].
In this paper it will be shown that every second order nonzero minor of the polynomial matrix

PA([IHS - A]" = %‘, AeR™ n2 2) is divisible (with zero remainder) by the polynomial 4

if and only if the characteristic polynomial ¢(s):det[]"s-—A] is equal to the minimal
polynomial ¥(s) of 4 . If the transfer matrix of m-inputs and p-outputs (min(m, p)z2)

linear system is written in the standard form T=E (d is the minimal common

| o denominator), then every second order nonzero minor of P is divisible by d if and only if
‘ g=d, where ¢ is the McMillan polynomial of 7. If the pair (4,) of single input system is
controllable then the closed-loop matrix 4, = 4+bk (k is a gain matrix) is cyclic if and only
if the matrix A is also cyclic. If the pair (4, B) of m-input system is controllable and 4 1s not
o cyclic then there exists a feedback gain matrix K such that 4, = 4+ BK is cyclic. If the pair
R (4,B) is uncontrollable and A4 is not cyclic then there exists a feedback gain matrix K such
that 4, = A+ BK is cyclic if and only if the submatrix 4; of (50) of the uncontrollable part
of the system is cyclic.

2. PRELIMINARIES

Let R™" be the set of mxn real matrices and R" = R™ .

i ' Consider the linear continuous-time system

X=Ax+Bu (1a)
y=Cx+Du (1b)

!

4
where x=x(t)€ R" is the state vector, u=u(f)e R” and y = y(t)e R” are the input and
output vectors, respectively and 4e R™,Be R_"X"',C e R, De R7™.
. The transfer matrix of the system (1) is given by

T(s)=C[l,s—A]'B+D ' @)
which can be written in the standard form
P(s)
T(s)= 3
6)) ) 3)
]

i » '
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wh%f"e Pe R”"{s],R™ |s] is the set of pxm polynomial matrices and d(s) is the minimal :

common denominator of all entries of 7'(s).
In what follows the following elementary row or column operations will be used [1,3]:

¥4 Multiplication of any row (column) by any nonzero number (scalar).

2. Addition of any row (column) multiplied by a polynomial to an other row (column).

3, Interchange of any rows (columns).

(j‘g{ng elementary row and column operations we may transform any polynomial matrix
P:¢’R”"[s] to its Smith canonical form [3,4]

P, (s) = diag[i,(5),1,(5),...,1,(5),0,...,0] € R”"[5] (4)
where i,(s),-..,i,(s) are monic invariant polynomials satisfying the divisibility condition
i,ﬁ(b‘) li (s), ie. i,(s) is divisible with zero remainder by i (s),k=1..,r-1 and
ries rank P(s) . :
Tﬂp»invariant polynomials can be determined by the relation

n )

. Dk (S)

# i (s)=—"= (D,(s)=1), k=1,.r 5

¢ () Qﬂﬂ(o()) (5)
where D, (s) is the greatest common divisor of all the £ x & minors of P(s).

Tﬁe characteristic polynomial ¢(s)= det[l,, - A] of the matrix 4e€ R™ and its minimal
polynomial ¥(s) are related by [1]

W(s) = T)ﬂ% | 6)

F{pm (4)-(6) it follows that ‘¥ (s) = ¢(s) if and only if
Di(s)=Dy(s)="-=D, (s) =1 O]

A matrix 4e R™ satisfying (7) (or equivalently ‘¥(s) = @(s)) is called cyclic (or normal
(5D

3. DIVISIBILITY OF SECOND ORDER MINORS OF CYCLIC MATRICES

For any Ae R™ the inverse matrix [Is - A]‘I can be written in the form

-
J

_l_&
(15— a]" == (8)

Where P, =P,(5s)e R™[s] and d =d(s) is the minimal common denominator,

T'hfm.Nm 1. Let AeR™ and n>2. Then every second order nonzero minor of P, is
divisible (with zero remainder) by 4 if and only if the characteristic polynomial
3’(3) = det[]s ~ A] is equal to the minimal polynomial of 4, i.e. @(s)="¥(s).

S
» ESA I AUTOMATYZACJA, ROBOTYZACJA, MONITOROWANIE 83




Proof. It is well known that any square matrix is similar to its Jordan canonical form, that is,
there exists a non-singular matrix 7 € R™ such that

J =TAT™" = diaglJ,(8)s-s S g, (8 Ty ()50 T, (8205 T, (50 (%a)
where
s 10 00
PO PA RS S P L ©b)
" 000 -~ s 1
0 00 0 s
§,,5y,-»8, are the distinct eigevalues of 4 and the multiplicity of s, s

my+my,+ectmy =m, Jj=l..q.
From (9a) it follows that
det[l,s—J,]=det[l,s - A]= p(s) (10
If (7) holds then
J, =diag[Jml(sl),Jml(sz),...,./m'(sq)] (m, +my+---+m, =n) 1y

and from (9a) we obtain

s—af =[s-10,1] =17[1,5-7,]'T =

= diag{l, s~ J, O [Ls = O] o U s = I (5T }=

_ diag{adj[lmlsdml () adjil,s =y (s))  adillys =T (S,,)]l .

d] b4 d2 H 2 dq ) j
where d, =(s—5,)",j=1...q and d=dd,-d,.

From (12) it follows that it is enough to show that every second order nonzero minor of the
adjoint matrix adj[[ml_s—;]mj (5,)] is divisible by d; for j=1...9.

Taking into account that

s-s, -1 0 - 0 0
adj[I s=J (s.)]=aab' OS—SJ_I ..... ' 00 =
s md 0 0 0 - s-s;, -1
0 0 0 - 0 s-s5
‘ (13)
(s—s)" : (s—sj)""'2 (s—sj)""—3 s—5, 1
_ 0 (s=s)"" (s—s)" : (s—s5,) 5,
S D o Lt e (s—s)'""' ..... (s—sj)""_z
0 0 0 0 (s—s)""

it is easy to check that every nonzero second order minor of (13) is divisible by
dj=(s—sj)m’,j=1,...,q.
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If p(s) # Y(s) then for at least Ione eigenvalue, let say s;, we have (for m, >m, )
J(s,) = diagl,, (5,3, T, (5,)]
and
55— (s )} = diaghL,, s~ 1., (s VU, 5=, (517 }=
(14) ;
= 71- a’iag{adj[]mlls =y (s ,.)l (s—s,)™ adj[Im“s ~ I (8, )]}

LT
where dm" = (S B s" )MII and the adjont matrices adill"ns - Jmi; (Sj )J’ adjllmns - JMn (SJ )} are
defined in the same way as (13).

1 0

It is easy to check that for example the second order minor . _—
(s=5,)" (s=s )™

of the

matrix
diagladll,, s, (s (5 = 5,)" ™ adjll, s J., (s}
is not divisible by 4,, .0

Remark 1. Any nondiagonal matrix 4=[a,]e R™ for n=2 is cyclic since D, (s) of

[I,s—A} isfor a, #0 or a, #0 anonzero scalar.

Theorem 2. A matrix 4=[a,]e R™ is cyclic if

=0 i >i+1
a, Jor j>i Lj=1..n (15a)
120 for j=i+l
or
=0 i>j+1
a, for i>j i,j =1 (15b)
120 for i=j+1

Proof. If (15a) holds then the minor M, obtained by deleting of the first column and the n-
th row of the matrix [I,5—A] is equal to M, =a,a,,---a,,, #0. Hence D, (s)=1. In this
case from (6) we obtain @(s) ="¥(s) . The proof for (15b) is similar (dual). O

In particular case from Theorem 2 it follows that the Frobenius matrix

1o 0 00 0 a
0 0 1 0 10 0 a
Ap === or A = : 16
710 0 o 11T 501 - 0 q (16)
a, a a, a,, 0 0 1 a,,

is eyclic [1).

4. DIVISIBILITY OF SECOND ORDER MINORS OF TRANSFER MATRICES

;I;he transfer matrix (2) of (1) can be always written in the form .(3). If the pair (4, B) is
achable (controllable) and the pair (4, C) is observable then

SEs
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P(sy=Cadj[ls— A]B+ Dd and d =det{{, s — 4] am
If m2p (pzm) and rankC = p (rankB=m) then r=rank P(s)=p(m) and the Smith
canonical form (4) of P(s) is equal to

| isy 0 - 0 ‘0 e 0
P(s)=UP(sV=| 0 is) -~ O 0 - 0|leR™[s] . (18)
B e S :

where U =U(s) € RP*?[s],V =V (s) € R™"[s] are unimodular matrices of elementary row and
column operations, respectively.
From (18) and (3) we have the McMillan canonical form of T'(s) [3,4]

r 7
LG 0 0 0

q;

Py(s) _UP@sYV _ n,
(5) =53 o 2. 0 0 -0 (19)
& dis) d(s) | Do
n

0 0 2 0
L qP J

ﬂ)_= n, (s)

where for k=1,..,p(n =i,q, =d),n, =n,(s) and q,(s) are factor coprime
d(s) q.(s)

polynomials such that », |n,,, and g,,,|9,, k=1,...,p—-1.

The polynomial

9(5)= 99,4, (20)
is called the McMilan polynomial of T'(s).
From (18) — (20} it follows that degg(s) > degd(s) and
q(s)=d(s) ifand only if q,(s)=1 for k=2,..., p (q,(s)=d(s)) 21
In the proof of the following theorem the Binet — Cauchy lemma will be used [1]:

Lemma. Let C=A4B, where 4eR™,BeR™". Then the minor of the ¢ order
(g £min(m, p) of the matrix C is given by the formula

hiy.dy - Z ki klkz 4
Cjijl"'jq Ak]"z kg J|Jz g (22)
1Sk <<k, <n

‘x’z

where 4 k is the minor consisting of rows i,i,,...i, and columns j, j,,.., Jq of the
q

matrix 4. The minors Bf'f’ f" and C}% '; are defined in the same way.
A}
Theorem 3. Let min(m, p)>2 and let T(s) be giten in the form (3). Then évery second
order nonzero minor of the polynomial matrix P(s) is d1v131ble (with zero remainder) by
d(s) if and only if ¢(s)=d(s).

Proof. Sufficiency. If g(s)=d(s) then by (21) ¢,(s)=1 for k=2,.., p and (19) takes the
form
£y (5)

d(s) @)

T;J ()=
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¥,

3 -1 P(s)
() =U" ()T, (s)V (S)—%
where
i,(s) 0 0 0 - 0 ‘
P,()=| 0 §(),(s)d(s) - 0 0 - 0 24)
g . ll(s)tp(s)d(S)O S
and

P(s) =U ()R, (s 7' (s)

U~'(s) and ¥"'(s) are unimodular matrices and some of the polynomials t,(s), k=2,.,p

may be equal to 1.
It is easy to see that every second order nonzero minor of B, (s) is divisible by d(s).

Applying Lemma to the matrix P(s)=U""(s)P, (s)V"'(s) we conclude that every nonzero
second order minor of P(s) is divisible by d(s). "

Necessity. If every nonzero second order minor of P(s) is divisible by d(s) then by Lemma
every second order nonzero minor of P, (s) is also divisible by d(s) since U™'(s) and
V™'(s) are unimodular matrices. This implies that the matrix P,, (s) has the form (24) and by
(23) we obtain g, (s) =1 for k=2,.., p. In this case from (21) we have g(s)=d(s). O

Remark 2. The Theorem 3 can be also proved by the use of Theorem 1 and Lemma.

Example 1. Consider the transfer matrix

T)"}IT]O" 1 s+2 0 95
=1 LT GG+ 0 s+ @3)

In this case
d®)=(+D(s+2)
and

P(s)= { 26)
The canonical Smith form of (26) is equal to

1 0
P.(s)= 27
- s(5) [0 (s+1)(s+2):| @
and the canonical McMillan form
I, ()= [ﬁ 0]

s+2 0
0 s+1

0 1
Hence

. g()=(s+D(s+2)=4d(s)
tis easy to see that det P(s) = d(s) is divisible by d(s).

EXample 2. Consider the transfer matrix

S
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v

2L 0 1 s+2 0
T(s){(o) J—}(ﬁl)z[o s+lj\ @8)

s+l

In this case d(s)=(s+1)? and P(s), Ps(s) are given by (26) and (27), respectively. Thus the
canonical McMillan form is equal to

—1_ 0
T, ()= {us)‘ ﬁ}

s+l
Hence g(s)=(s+1)’ #d(s).
It is easy to see that det P(s) = (s +1)(s+2) is not divisible by d(s)=(s+ 2.

5. SYSTEMS WITH STATE-FEEDBACKS.
Let us consider the system (1) with the state-feedback
u=v-Kx (29)

where ve R™ is the new input vector and K € R™".
Substitution of (29) into (10) yields

i=Ax+Bv 30)
where
A =A+BK (31
5.1. Single-input systems

Consider the single input (m=1) system (1) with (29), B=b and K =k e R™.

Theorem 4. The pair (4,b) is controllable only if the characteristic' polynomial
o(s) = det[Is - A] is equal to the minimal polynomial ‘¥(s) of 4,1i.e. p(s)="¥(s).

Proof. It is well-known [3,4] that the pair ( 4,4 ) is controllable if and only if

rank{b, 4b,..,A"'b]=n @31
If W(s) # o(s) then from (6) we have deg¥(s)=n, <n.
Let W(s)=s"+ anl_ls""l ++as+a,. Then A" = —anl_,A""' ——aA—a,I, and all

columns A"b,.,A" b in the matrix [b, 4b,..., A"'b] are linearly dependent on
b, 4b,..., A""'b. '

Therefore, the condition (31) can be satisfied only if "{’(s) =@(s). 0

It is also well-known [3,4] that the pair (4,,b) is controllable if and only if the pair (4,5) is
controllable. \ i

Theorem 5. Let the pair (4,b) be controllable. Then the matrix 4, ‘of the closed-1oop
system (30) is cyclic if and only if the matrix 4 of (1) is cyclic.
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PrOOﬂ Necessity. If the pair (4,b) is controllable then the pair (4,,b) is also controllable for
any feedback gain matrix k. By Theorem 4 the controllability of the pair (4,,b) implies that
15} cyclic.

sufﬁaency If the pair (4,b) is controllable then there exists a non-singular matrix 7 such
that [j 4]

0
0 0 0
0
—1 1 0 e .
A=TAT" = o . ,b=Th=]" (32)
‘ 0
A ,;‘;H 4y~ T4y o Tdn 1
T he matmx A is eyclic with ¥ (s) = det[Is — A]=det[Is— A4].
Usmg (32) we may write o
A =A+bk=T"(A+bk)T (33)
k=i =k, Ky, k, ] (34)
0 1 0 0
0 0 0 - 1 ’
k—l_ao I;Z_al l;z—az En‘“an—l

m%ychc From (33) it follows that det[s — 4,] = det[Is— 4] and 4, is also cyclic. O
'Iiherefore we have the following corollary

~:‘C‘3‘rollary 1. If the pair (4, ) is controllable the cyclicity of the matrix 4 is invariant under
:thg state-feedback.
': ﬂtf\ye pair ( 4,b) is not controllable and A is not cyclic then as shows the following example

;_}'t‘ié‘possible to choose the feedback gain matrix so 4, = 4+ bk is cyclic.

' (36)

0_1‘:@—1)2 and ¥(s)=s-1. 1£

10
¥ fasy to verify that for k=[0 1] the closed-loop matrix A, = A+bk = {0 2?1 is cyclic
"‘*’(S) o(s) = (s + 1)(s + 2).

n 8eneral case when the single-input system (1) is not controllable there exists a non-singular
Matrix T such that {3.4]

S
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B

s

_ A A b rxr r t’
A:TAT“*:{O1 A}b Th= [}AER obeR a7 1
3 3 ¢

5

0 R(n rix(n-r)
where the pair (4,,b) 1is controliable and it has the canonical form (32) and ;
r = rank(b, Ab,..., A"'bl < n.

e

Theorem 6. Let the pair ( 4,b) be uncontrollable and 4 be not cyclic. Then there exists a
feedback gain matrix & such that 4, = 4+ bk is cyclic if and only if the matrix 4; is cyclic.

Proof. Sufficiency. If 4, is cyclic, 4, has the Frobenius form and 4 is not cyclic

then the minimal polynomials ¥ (s) and ¥,(s) of 4, and 4, have at least one common
factor. The pair (4,,b,) is controllable. Thus it is possible to choose & so that the matrix
A, + bk has a minimal polynomial which has no common factors with ¥, (s). In this case the

matrix A4(A) is cyclic.
Necessity. Follows immediately from the fact that A(4) is cyclic only if 4, is cyclic. O

Example 2. Consider the single-input system (1) with

0 1 0 0 0 0
o o0 1 1 0 0
A=1-4 -8 -5 0 -1},b=|1 (38)
0 0 0 0 1 0
0o 0 0 -1 -2 0
It is easy to check that the pair is not controilable and it has already the desired fprm (37) with
0o 1 0 0 0 0
A4=[0 0 1[4=1 0}4 =L01 _1zj|,b, ={0 39)
-4 -8 -5 0 -1 |1

The matrices A4, and 4, are cyclic but their minimal polynomials
¥, (s) =det[Is— 4, ]= (s +1)(s +2)*, ¥, (s) =det[ls — 4,]= (s + 1)> have common factor (s+1).
Therefore, the matrix A4 is not cyclic.

The conditions of Theorem 6 are satisfied and there exists a feedback gain matrix
k=[k k, k; k, k;] such that 4, = 4+bk is cyclic. The gain matrix k should be chosen so

that the minimal polynomial of A, = 4, +bk,k =k, k, k;] has no common factors with

o
U\ “ “‘ i
| fy il

W, (s). Let the desired minimal polynomial of 4, be *Pcl (5)=(s+2)°.
Then

0 v o] o 0 1. 0

A,=A+bk=| 0 0 1 |+/0[-4-4-1]=0 0. 1
-4 -8 -5 |1 -8 -12 -6
k=[k k, k;]=[-4,—4,~1,0,1)

and -
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0 1 0 o0 O
0 0 1 1 0

A =A+bk=|-8 -12 -6 0 0 (40)
0 0 0 o0 1

0 0 0 -1 -2

?’Consxder the m-inputs system (1) with (29).
f the pa.lr (A4,b) is controllable then there exists a non-singular matrix 7 such that [3,4]

B,

d;xd

,4, € R* B e R“" (41a)

= y
a, =la] af. g

41b
l—[o 01 bl,l+|..‘b1m] ( )

1=l

Theorem 7. Let 4 be not cyclic. Then there exists a feedback gain matrix K such that
A =A% BK is cyclic if the pair (4,B) is controllable.

L
PTO‘M If the pair (4,B) is controllable then the pair can be transformed to its canonical form
@1y

Let ﬁ_,' .
N %* b -1

(42)

(43)

(44)

91




d=[d,,d,,...d,,] (45)

Using (42)-(45) it is easy to verify that , )
A =T(A+BK)T" =A+BKT" =4+BBB"KT"" =4+BK =

(46)
0 1 0 '
0 0 1 o
~-dy, —dy —dy -d,,
The matrix (46) is cyclic.
The desired feedback gain matrix is given by the formula
K =BKT ‘ (47)

which follows from (44). O

Remark 3. Note that for different (45) we obtain different matrices (46). Hence there exist
mary gain matrices K solving the problem.

Example 3. Consider the system (1) with

o 1 0 0 ©0 0 0
-1 -2 0 1 O 11
A4=0 0 0 1 0| B=|00 (48)
0 0 o0 0 1 0 0
0 0 -4 -8 -5 01

The pair (48) is controllable and has already the form (41) but the matrix A is not cyclic. In
this case d, =2,d, =3,n,=d,,n, =d, +d, =5T =1 ,A=A and B=B. .

To find a feedback gain matrix K =[k, Je R such that 4, = A4+ BK is cyclic we compute
using (42), (43), (44) and (47)

>
Il
1}
Koaliier
|
e
o -
—_—
| S——
L
11
1
o
—_
i
Lv__l
ST}
]
|
>
1l
o o o~ o
- o o o ©

and

1 Aaf1 2 1 -1 0
K =BKT = : -
0 1|-d, -d 4-d, 8-d, 5-d,| -

49)
_|1+d, 2+d, d,-3 d,-9 d,-5
-d, -d, 4-d, 8-d, 5-4d,
Using (48) and (49) we obtain the cyclic matrix
92 AUTOMATION 2002
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4. =A+BK =

[T T I

4

If the pair (4, B) is uncontrollable then there exist a non-singular matrix T such that [3,4]
—_ A _ B rxr rxm
A=TAT' = 4 2’B=TB= I’AIER ’l_;le_R (50)
0 4, 0 A, & RO
where the pair (4,,h) is controllable and it has the canonical form (41) and
r=rank[A,AB,...,A"'Bl <n.

Theorem 8. Let the pair (4,B) be uncontrollable and let the matrix 4 be not cyclic. Then
there exists a feedback gain matrix K such that 4, = 4+ BK is cyclic if and only if the
submatrix 4, is cyclic.

The proof is similar to the proof of Theorem 6.

6. Concluding remarks

It has been show that every second order nonzero minor of the polynomial matrix P, of (8) is
divisible (with zero remainder) by the polynomial 4 if and only if the characteristic
polynomial ¢(s) is equal to the minimal polynomial W(s) of A4 . If the transfer matrix T
has the form (3) then every second order nonzero minor of the polynomial P is divisible by ¢
if and only if g=d (g is the McMillan polynomial of 7). If the pair (4,5) of single-input
system is controllable then the closed-loop matrix A, is cyclic if and only if 4 is cyclic. If the
pair (4, B) of m-input system is controllable and A is not cyclic then there exists a feedback
gain matrix X such that 4, = 4+ BK is cyclic. If the pair (4, B) is uncontrollable and 4 is
not cyclic then there exists a feedback gain matrix X such that 4, = A4+ BK is cyclic if and
only if the submatrix A4, of (50) of the uncontrollable part of the system is cyclic.

The considerations with slight modifications are also valid for discrete-time linear systems.
An extension of there considerations for singular linear systems will be presented in a next

Paper. An open problem is an extension of there considerations for standard and singular 2D
linear systems [3].
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