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INFLUENCE OF THE STATE-FEEDBACK 
ON CYCLICITY OF LINEAR SYSTEMS 

Abstract. It is shown that every second order nonzero minor of the 
( P 

polynomial matrix PA [Is — A]-1 = , A E r"" , n 2 is divisible (with 
d J 

zero remainder) by the polynomial d if and only if the characteristic 
polynomial yc,(s)= det[/„s — A] is equal to the minimal polynomial (s) of 

A . If the transfer matrix of m-inputs and p-outputs min(m, p) 2 linear 
P 

system is written in the standard form T = — (d is the minimal common 
d 

denominator), then every second order nonzero minor of P is divisible by d 
if and only if q = d, where q is the McMillan polynomial of T. If the pair 
(A, b) of single-input system is controllable then the closed-loop matrix 

= A + bk (k is a gain matrix) is cyclic if and only if the matrix A is also 
cyclic. If the pair (A,B) of m-input system is controllable and A is not 
cyclic then there exists a feedback gain matrix K such that A, = A + BK is 

cyclic. If the pair (A,B) is uncontrollable and A is not cyclic then there 
exists a feedback gain matrix K such that A, = A + BK is cyclic if and only 

if the su. bmatrix A, of (50) of the uncontrollable part of the system is cyclic. 

Streszczenie. W pracy wykazano, że każdy niezerowy minor stopnia 

drugiego macierzy PA [Ins — Ar , A e R"'" , n 2 jest podzielny bez 
d 

reszty przez wielomian d wtedy i tylko wtedy, gdy wielomian 
charakterystyczny p(s)= det[i„ s — Al jest równy wielomianowi 

minimalnemu W(s) macierzy A. Jeżeli macierz transmitancji układu o m-

wejściach i p-wyjściach min(m,p) 2 jest w postaci T = — (d jest 
d 

najmniejszym wspólnym mianownikiem), to każdy niezerowy minor stopnia 
drugiego macierzy 'P jest podzielny bez reszty przez d wtedy i tylko wtedy, 
gdy q=d, przy czym q jest wielomianem McMillana macierzy T. Jeżeli para 
(A, b) układu o jednym wejściu jest sterowalna, to macierz układu 

zamkniętego A,. = A + BK (k jest wektorem wzmocnień)jest cykliczna wtedy 

i tylko wtedy, gdy macierz A jest również cykliczna. Jeżeli para (A,B) 
układu o m-wejściach jest sterowalna i macierz A nie jest cykliczna, to 
istnieje macierz sprzężeń zwrotnych K taka, że macierz A, = A + BK jest 

cykliczna. Jeżeli para (A,B) jest niesterowalna i macierz A jest niecykliczna, 
to istnieje macierz sprzężeń zwrotnych K taka, że macierz A, = A + BK jest 
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cykliczna wtedy i tylko wtedy, gdy podmacierz A, (w (50)) części 

niesterowalnej układu jest cykliczna. 

1. INTRODUCTION 

In the monograph [5] Rosenwasser and Lampe have introduced the notion of the sitwie 

matrix (einfache Matrix, which is equivalent to the cyclic matrix [4]) and the notion of the 

normal matrix (normale Matrix). They have shown that if the normal transfer matrix is written 

P 
in the standard form T = — (d is the minimal common denominator), then every second 

d 
order nonzero minor of P is divisible by d with zero remainder. Some implications of this 
approach to electrical circuits have been discussed in [2]. 
In this paper it will be shown that every second order nonzero minor of the polynomial matrix 

( P [Ins — = A ,AER ,n> 2 is divisible (with zero remainder) by the polynomial d 
d 

if and only if the characteristic polynomial o,(s)= det[/„s — A] is equal to the minimal 

polynomial T(s) of A . If the transfer matrix of m-inputs and p-outputs (min(m,p). 2) 

P 
linear system is written in the standard form T = — (d is the minimal common 

d 
denominator), then every second order nonzero minor of P is divisible by d if and only if 

q = d, where q is the McMillan polynomial of T. If the pair (A, b) of single input system is 

controllable then the closed-loop matrix A, = A+ bk (k is a gain matrix) is cyclic if and only 

if the matrix A is also cyclic. If the pair (AB) of m-input system is controllable and A is not 

cyclic then there exists a feedback gain matrix K such that A, = A + BK is cyclic. If the pair 

(A, B) is uncontrollable and A is not cyclic then there exists a feedback gain matrix K such 

that A, = A + BK is cyclic if and only if the submatrix A, of (50) of the uhcontrollable part 

of the system is cyclic. 

PA 

2. PRELIMINARIES 

Let R'" be the set of In x n real matrices and R" := R"1

Consider the linear continuous-time system 

i=Ax+Bu 

y = Cx + Du 

where x = x(t) e R" is the state vector, u =u(t) E It"' and y = y(t) e R P are the input and 

output vectors, ,respectively and A E R"'" , B E R"'" ,C E RP" , D E R"'". 

, The transfer matrix of the system (1) is given by 

T (s) = C[I „s — Ar B + D 

which can be written in the standard form 

T(s)= 
P(s)
d(s) 

(2) 

(3) 
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o eit P E R [s] , R Pg" [s] is the set of p x m polynomial matrices and d (s) is the minimal 

comon denominator of all entries of T (s) , 

ju what follows the following elementary row or column operations will be used [1,3]: 
n: Multiplication of any row (column) by any nonzero number (scalar). 

2. Addition of any row (column) multiplied by a polynomial to an other row (column). 

3. Interchange of any rows (columns). 
Oil/1g elementary row and column operations we may transform any polynomial matrix 

F 1?'"[s] to its Smith canonical form [3,4] 

P, (s) = diagii, (s), i,(s),. , i , (s), 0,...,0] e R"" [s] (4) 

valere (s),..., i,(s) are monic invariant polynomials satisfying the divisibility condition 
- 

k.,1(s) I z, (s), i.e. i +  (s) is divisible with zero remainder by i, (s), k = 1, , r — 1 and 

rank F(s). 
Theinvariant polynomials can be determined by the relation 

ik (s) = DIr (s) (D
0
(s)=1), k =1,..., r (5) 

D k_i (s) 

where D,, (s) is the greatest common divisor of all the k x k minors of P (s) . 

the characteristic polynomial p(s) = det[/„ — A] of the matrix A e R"" and its minimal 

polynomial T(s) are related by [1] 

9(s) 
(6) 

D„,(s) 

From (4)-(6) it follows that T(s) = 9(s) if and only if 

D,(s)= D2 (s)= = D (s) =1 (7) 

A matrix A E R"" satisfying (7) (or equivalently T(s) = yo(s)) is called cyclic (or normal 

[5]). 

3, DIVISIBILITY OF SECOND ORDER MINORS OF CYCLIC MATRICES 

For any A E R'" the inverse matrix [Is — Ar can be written in the form 

[ls— = 
d 

(8) 

Where PA = PA (S) E R"[s] and d = d (s) is the minimal common denominator. 

Theorem 1. Let A e R'" an. d n > 2. Then every second order nonzero minor of PA is 
divisible (with zero remainder) by d if and only if the characteristic polynomial 
P(s) det[/s — A] is equal to the minimal polynomial of A, i.e. yo(s) W(s) 
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Proof. It is well known that any square matrix is similar to its Jordan canonical form, that is, 

there exists a non-singular matrix T E R"" such that 

where 

J = TAT = diag[J ii (s,),. . • ( 81), 21(s 2),• • , 4,k 2 (2) ,- • , nyc,(5  q)} 

J „,(s) - 

s 1 0 • • • 0 0 

O s 1 • • • 0 0 

0 0 0 • • • s 1 

0 0 0 — O s 

R"'" [s] 

(9a) 

(9b) 

are the distinct eigevalues of A and the multiplicity of sj is 

m j, +m 2 + • • - + = mj, j =1,...,q 

From (9a) it follows that 
det[/„s- J A1= det[/„s -A]= 01(s) (10) 

If (7) holds then 
J A = diag[J (s,), J „,2 (s 2),..., J ,„, (s q )] (m, +m2 + • • • + m q =n) (11) 

and from (9a) we obtain 

[/„s - Ar =[Ins - J ATP = [Ins - J 4 1-1 T = 

= I mis - J „,, (3,)11 ,[I - J „,2 (s2 )11 , • • • ,[I „,gs - J „,.(s q)]-11= 

= diag{ 
adj[I"'  ̀s - J (s,)] adj[l - J ,,,, (s2)] adj[I - J „,.(s 

(12) 
d, d2 d 

where d = (s - s j )m) , j =1,...,q and d = d,d,• • • dq . 

From (12) it follows that it is enough to show that every second order nonzero minor of the 

adjoint matrix adj[i - J (s j)] is divisible by cij for j =1,...,q . 

Taking into account that 

adj[J J ,,, (s)]= adj 

- (s - s jr 

O 

(s - s j)
m

j
-2 

(s - s j r 

-s—Si

O S— S , 

-1 0 • • • 0 0 - 

O O 

O 0 0 • • • s - s j -1 

0 0 0 • • • O 

(s - s) °1-3

(s - s j)'Hj 
-2 

O 
O 

O 

O 

it is easy to check that every nonzero 

S — Si 

(s - S,)
2 

S — S 

1 

S — S, 

(13) 

o (s—s1 ) " 1-1 (S — S ,) 41-2

0 0 (s - s j)mrl

second order minor of (13) is divisible by 
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If ss)* Y(s) then for at least one eigenvalue, let say s„ , we have (for m > m1 ) 

J(s1) = diag[J (s,),J„,, (s,)] 

[Is — J(s,)] 1 = —J„,j2 (s,)]-11= 

= diagladj[I,„ s — J (s )1(s — adjk s — J (s )11 
1 

ffl.,2 J 

where d = (s —  and the adjont matrices adj[I s — adj[I s— J„,,i (s,)lare 

defined in the same way as (13). 

and 

It is easy to check that for example the second order minor 

matrix 

1 0 

(s —s, r" (s —s r" -1

(14) 

of the 

diadadj[1„,,is — adj[1,„,,s— J,,, (s,)]} 

is not divisible by d,„ .0 

Remark 1. Any nondiagonal matrix A =[ao ] E Rn" for n=2 is cyclic since D,, 1(s) of 

[I„s— A] is for a12 * 0 or a2,* O a nonzero scalar. 

Theorem 2. A matrix A =[au ] E R is cyclic if 

or 

=O for j>i+1 
a._ 
'{*0 for j = i+1 

[=0 for i> j+1 
a.. 
'*0 for i= j +1 

i,j =1,...,n 

i,j=1,...,n 

(15a) 

(15b) 

Proof. If (15a) holds then the minor M„, obtained by deleting of the first column and the n-
th row of the matrix [ins — A] is equal to M„,= a12a23 ' • * 0. Hence D(s) =1. In this 
case from (6) we obtain v(s)= „li(s). The proof for (15b) is similar (dual). O 
In particular case from Theorem 2 it follows that the Frobenius matrix 

A, — 

is cyclic [I]. 

4. DIVISIBILITY OF SECOND ORDER MINORS OF TRANSFER MATRICES 

The transfer matrix (2) of (1) can be always written in the form (3). If the pair (A, B) is 
reachable (controllable) and the pair (A, C) is observable then 

O 
O 

or 4 = 

O 0 • • • 0 a, 

1 0 • • • 0 a, 

O 1 • • • 0 a2

0 • • • 1 

(16) 
0 0 

a, a1

O 

az a n-1 
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P(s) = C adj[] „s — AP + Dd and d = det[ips — Al (17) 

If m p (p m) and rank C = p (rankB = m) then 

canonical form (4) of P(s) is equal to 

Ps(s)=UP(s)V 

i, (s) 0 • • 

O i2 (s) 

r = rank P(s)= p(m) and the Smith 

O 0 ••• 

o O • • • O E RP"[s] . (18) 

O O • • ip (s) 0 • • • 0 

where U = U (s) E R P"' [S], V = V(S) E R"" [s] are unimodular matrices of elementary row and 
column operations, respectively. 
From (18) and (3) we have the McMillan canonical form of T (s) [3,4] 

P5(s) =  UP(s)V 

d(s) d(s) 

n, o

O 0 
412 

O O 

O 

O o ..• 51. o ••• o 

(19) 

i k (s)  nk (s) 
where for k =1,..., p (n1 = i,, q, = d),nk = nk (s) and q (s) are factor coprime 

d(s) q(s) 

polynomials such that n, n„, and q 1 I qk , k =1,..., p —l. 

The polynomial 
q(s) = q,q,...q p

is called the McMilan polynomial of T (s) . 

From (18) — (20) it follows that deg q(s) _ deg d(s) and 

q(s) = d(s) if and only if q(s) =1 for k = 2,...,p (q,(s)= d(s)) 

In the proof of the following theorem the Binet — Cauchy lemma will be used [1]. 

(20) 

(21) 

Lemma. Let C = AB, where A E I?'" , B E R  . Then the minor of the g order 

(q .... min(m, p) of the matrix C is given by the formula 

&I''-'9 = y ill''' 
•
j' Bkik2 "kg 

Jth .1, kik,..k, l ii 2 • i q
15k,.c...<k , 

where A,':,',"'..%;, is the minor consisting of rows i, , i2 ,..., iq and columns 11,12 ,...,jg of the 

matrix A. The minors B JIJ 2 "9 and C.,11i2: „gi, are defined in the same way. 
1. 

(22) 

Theorem 3. Let min(m, p) 2 and let T (s) be Oren in the form (3): Then every second 

order nonzero minor of the polynomial matrix P(s) is divisible (with zero remainder) by 
d(s) if and only if q(s) = d(s) 

Proof. Sufficiency. If q(s) = d(s) then by (21) q(s) =1 for k = P and (19) takes the 

form 

T, (s) = 
P, (s) 

, d(s) _ 
(23) 
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T (s) = U' (s)TM (s)V 1 (s) = 
P(s)

where 
0 

„M()= O i(s)t2(s)d(s)

d(s) 

O O • • • O 

O O — O 

O 

and 

O i(s)t(s)d(s) 0 • • • 0 

P(s)= (s)P, (s)V (s) 

(24) 

U-1(s) and V-1(s) are unimodular matrices and some of the polynomials tk (s), k = 2, • P 
may be equal to 1. 

It is easy to see that every second order nonzero minor of P, (s) is divisible by d (s) , 

Applying Lemma to the matrix P(s) = (s)P, (s)V" (s) we conclude that every nonzero 
second order minor of F(s) is divisible by d (s) . 

Necessity. If every nonzero second order minor of P(s) is divisible by d(s) then by Lemma 
every second order nonzero minor of P, (s) is also divisible by d(s) since U' (s) and 
V I(s) are unimodular matrices. This implies that the matrix P, (s) has the form (24) and by 
(23) we obtain q k (s) = 1 for k = 2,..., p . In this case from (21) we have q(s) = d (s) . q 

Remark 2. The Theorem 3 can be also proved by the use of Theorem 1 and Lemma. 

Example 1. Consider the transfer matrix 

T (s) =['+' 
01 1 rs 1- 2 

O+11 (s +1)(s + 2) O i s 
In this case 

d(s)= (s +1)(s + 2) 
and 

The canonical Smith form of (26) is equal to =PO o 

(s +1)(s + 2)1 
and the canonical McMillan form 

Hence 

P(s)=[s + 2 O 

0 s+1

T, (s) =
O 

O 

q(s) = (s +1)(s + 2) = d(s) 
It is easy to see that det F(s) = d(s) is divisible by d(s).

Example 2. Consider the transfer matrix 

(25) 

(26) 

(27) 
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'fiP1' 

' 

T (s) =[(
1= 1 [ s +2 0

)2 
O (s±1)2 0 s +1 

  0 s+2 
(28) 

In this case d (s) = (s + 1)2 and P(s), Ps (s) are given by (26) and (27), respectively. Thus the 

canonical McMillan form is equal to 

T, (s) =[04-02
O 

t O 1 

Hence q(s) = (s +1)3 # d (s) 

It is easy to see that detP(s) = (s +1)(s + 2) is not divisible by d(s)= (s + 1)2

5. SYSTEMS WITH STATE-FEEDBACKS. 

Let us consider the system (1) with the state-feedback 

u = v — Kx 

where v E R" is the new input vector and K e R . 
Substitution of (29) into (10) yields 

where 

= Acz + By 

A, = A+ BK 

(29) 

(30) 

(31) 

5.1. Single-input systems 

Consider the single input (m=1) system (1) with (29), B = b and K = k E

Theorem 4. The pair (A,b) is controllable only if the characteristic polynomial 

yo(s) = det[/s — A] is equal to the minimal polynomial W(s) of A, i.e. q(s) = qi(s). 

Proof. It is well-known [3,4] that the pair (A,b) is controllable if and only if 

rank[b, Ab,..., A"-1 b] = n (31) 

If qi(s)* p(s) then from (6) we have deg qi(s) = n, < n . 

Let \P(s)= s'" + a 1s"1-1 + • • • + a,s + a,. Then żel = —a 1A 1 — • • • — a,A — aoi and al 

columns A"' b,..., A" b in the matrix [b, Ab,..., An-lb] are linearly dependent on l

b, Ab,..., A'"-1 b 
Therefore, the condition (31) can be satisfied only if 4'(s)= yo(s). 

It is also well-known [3,4] that the pair (4, b) is controllable if and only if the pair ( A,b ) is 

controllable. 

Theorem 5. Let the pair (A,b) be controllable. Then the matrix A, of the closed-looP 

system (30) is cyclic if and only if the matrix A of (1) is cyclic. 
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prof Necessity. If the pair ( A,b) is controllable then the pair (A,,b) is also controllable for 

any fe'edback gain matrix k. By Theorem 4 the controllability of the pair (A „b) implies that 

A 4cyclic. 

SuffiCiency. If the pair (A,b ) is controllable then there exists a non-singular matrix T such 

that 041 

o 1 0 
O 

O 0 O 
= TAT'' = 

• 1 
= Tb = 

O 0 0 • 1 
O 

— ao —a —a2 —a 1 _ 

— 
The matrix A is cyclic with T(s) = deq/s — A]=- det[is — A]. 

' Using (32) we may write 
A, = A + bk =T-1 a -1-6-0T 

-wheie 

ei cc the matrix 
O 1 O O 

o o 1 o 
A,=:, f +bk = 

o 6' o i 

-k, -a, k ", - a i k3 —a2 • - • .1„— a„_, _ 

die. From (33) it follows that det[is — Aj = det[[s — Tt] and A, is also cyclic. 

herefOre, we have the following corollary 

'Otillary 1. If the pair ( A,b ) is controllable the cyclicity of the matrix A is invariant under 

'tI4'state-feedback. 
Ilfthe pair ( A,b) is not controllable and A is not cyclic then as shows the following example 

:itq possible to choose the feedback gain matrix so A, = A + bk is cyclic. 

(32) 

(33) 

(34) 

(35) 

ample 1. The pair 

A = 
1 O 

O 1 
, b = 

•not controllable and A is not cyclic since yo(s)= 

_1 

s —1 O 

O s —1 

(36) 

= (s-1)2 and T(s) = s —1. It 

_ 
I 0 

easy to verify that for k --- [0 1] the closed-loop matrix A, =A + bk = 
0 2 

is cyclic 

general case when the single-input system (1) is not controllable there exists a non-singular 
Ifiatrix T such that [3,4] 

4, 

n'167.—oc„  
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- 1 

1.0 

i I 1 I 
11 1 1 

11 hh 

.71 =TAT -1 = 
AA, —, b Tb =[b, A, E R"' ,b, ER" 

0 A, 0 A, E

- 

where the pair (4,b1) is controllable and it has the 

r = rank[b, Ab,..., A"' b] < n . 

Theorem 6. Let the pair (A, b) be tuicontrollable and A be not cyclic. Then there exists a 

feedback gain matrix k such that A, = A+ bk is cyclic if and only if the matrix A, is cyclic. 

J 

(37)

canonical form (32) and 

Proof. Sufficiency. If A, is cyclic, A, has the Frobenius form and A is not cyclic 

then the minimal polynomials T, (s) and Y3 (s) of A, and A, have at least one common 

factor. The pair (A1 , b1 ) is controllable. Thus it is possible to choose k so that the matrix 

A, + b,k has a minimal polynomial which has no common factors with T, (s) . In this case the 

matrix ..74(A) is cyclic. 

Necessity. Follows immediately from the fact that 71(A) is cyclic only if A, is cyclic. 

Example 2. Consider the single-input system (1) with 

O 1 0 0 0 - 0 

0 0 1 1 0 0 

A= —4 —8 —5 0 —1 , b = 1 (38) 

0 0 0 0 1 0 

0 0 0 —1 —2 0 _ 
It is easy to check that the pair is not controllable and it has already the desired form (37) with 

0 1 0 0

A, = 0 1 A, = 1 0 A, 
=[O 1

-1 —2 'b' 
= 0 (39) 

—4 —8 —5 0 —1 1 

The matrices A, and A are cyclic but their minimal polynomials 

= det[is — A,] = (s +1)(s + 2)2 T.,(s)= det[Ly — A,]= (s +1)2 have common factor (s+1). 

Therefore, the matrix A is not cyclic. 
The conditions of Theorem 6 are satisfied and there exists a feedback gain matrix 

k =[k, k, k, k, kJ such that A, = A + bk is cyclic. The gain matrix k should be chosen so 

that the minimal polynomial of A,, = A, ±b1k,k =?[ic, k, kJ has no common factors with 

T, (s) . Let the desired minimal polynomial of A,, be 4,, (s).-- (s+ 2)3 . 

Then 

and 

0 1 0 -

4, = A, + b,Tc- = 0 0 1 + 

—4 —8 —5 

O 

1 

0 1 

[-4,— 4,-1] = 0 0 1 

—8 —12 —6 

k =,[k k, k 5 ]=[-4,— 4,-1,0,1] 

90 AUTOMATION 2002 

I,



It 

t. 

0 I 0 0 O 

O O 1 1 0 

A„= A + bk = —8 —12 —6 0 0 (40) 

O 0 0 0 1 

O 0 0 —1 —2 
is easy to check that the matrix (40) is cyclic with the minimal polynomial 

4.2i1nIti-input systems 

Consider the m-inputs system (1) with (29) 
If the pair (A,b ) is controllable then there exists a non-singular matrix T such that [3,4] 

k - B, 

-27 = TAT-I =
[A„„ A„„„

11 133 =TB = 
• • • 

„A. E Rad ' , B, E R "' (41a) 

_B„, 

wheW.

= 
— a, 

[O 
—au

for 

for i = j roi a, =[a`,61 
= Lb, j b, =[0. • .0 1 • b„] 

i j 

(41b) 

and are the controllability indexes satisfying 2; d, = n. 

Theotem 7. Let A be not cyclic. Then there exists a feedback gain matrix K such that 
BK is cyclic if the pair (A, 

Protf, If the pair (A, B) is controllable 
(41k: 
Let "' 

B) 

b, 

is controllable. 

then the pair can be transformed to its canonical form 

b, 
1 b,, • • • bi„, 

=0 1 • b,,,, (42) 

en 
b„, 

0 0 1 

= = [O • • • O l]r E Rd' (43) 
Define 

— + 

K= KT-1 = — ,+ (44) 
—a,, —d 

wh4e n = 
d a is the n, -th row of A,e, is the i-th row of 1„ and k 

kni 
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7 

d =[do,d„...,d ] (45) 

Using (42)-(45) it is easy to verify that 

A,=T(A+BK)T-' =A±BKT = A + .:f313KT -1 =71+  = 
(46) 

O 1 O 

O O 1  O 

O 0 0 1 

-d, -d,

The matrix (46) is cyclic. 
The desired feedback gain matrix is given by the formula 

K = ijk-T (47) 

which follows from (44). D 

Remark 3. Note that for different (45) we obtain different matrices (46). Hence there exist 

many gain matrices K solving the problem. 

Example 3. Consider the system (1) with 
_0 1 0 0 0 0 0-

-1 -2 0 1 0 1 1 

A= O O O 1 O , B = O 0 (48) 

0 0 0 0 1 O O 

O 0 -4 -8 -5 0 1 

The (48) is controllable and has already the form (417) but the matrix A is not cyclic. In pair 
this case d,= 2,d3 =3,n, = d,,n, = d, +d,=5,T =15,71=A and = B . 
To find a feedback gain matrix K =[ka ] E R 2' 5 such that A,= A+ BK is cyclic We compute 

using (42), (43), (44) and (47) 

B = 

= 

b,i l-
b, -LO 1 

a + 

a„ -d 
2 

O 0-_ 

1 0 

=P -11,Ti =P-B= O O 
LO 1] 

0 0 

O 1 

2 1 -1 

-d, -d, 4-d2 8 - d, 5-d4

and 

K = BKT = -1 —11 1 2 1 -1 0 

O 1 d, -d, 4-d2 8 - d, 5-d4
(49) 

1±d0 2 + d, d2 -3 d3 -9 d, - 51 

-d, -d, 4 - d, 8 - d, 5 - d, 

Using (48) and (49) we obtain the cyclic matrix 
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A, = A+ BK = 

o o o - 

O o 1 o o 

o o o 1 0 

O O O O 1 

—d0 —d1 —d2 —d, —d4

If the pair (A,B) is uncontrollable then there exist a non-singular matrix T such that [3,4] 

B, E R"' , B, E R" 
74 =TAT-1 =[A' A 2 B =TB = (50) 

0 A3] [ 0 A3 E

where the pair (A,,b,) is controllable and it has the canonical form (41) and 

r = rank[A, AB ,... , A"-1 B] <n.

Theorem 8. Let the pair (A,B) be uncontrollable and let the matrix A be not cyclic. Then 

there exists a feedback gain matrix K such that A, = A+ BK is cyclic if and only if the 

submatrix A, is cyclic. 

The proof is similar to the proof of Theorem 6. 

6. Concluding remarks 

It has been show that every second order nonzero minor of the polynomial matrix P, of (8) is 

divisible (with zero remainder) by the polynomial d if and only if the characteristic 
polynomial yo(s) is equal to the minimal polynomial T(s) of A . If the transfer matrix T 
has the form (3) then every second order nonzero minor of the polynomial P is divisible by d 
if and only if q = d (q is the McMillan polynomial of 7). If the pair (A,b) of single-input 

system is controllable then the closed-loop matrix A, is cyclic if and only if A is cyclic. If the 

pair (A,B) of m-input system is controllable and A is not cyclic then there exists a feedback 
gain matrix K such that A, = A + BK is cyclic. If the pair (A,B) is uncontrollablę and A is 
not cyclic then there exists a feedback gain matrix K such that A, = A + BK is cyclic if and 
only if the submatrix A, of (50) of the uncontrollable part of the system is cyclic. 
The considerations with slight modifications are also valid for discrete-time linear systems. 
An extension of there considerations for singular linear systems will be presented in a next 
paper. An open problem is an extension of there considerations for standard and singular 2D 
linear systems [3]. 
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