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Abstract: Notions of the externally and internally positive standard and 
singular discrete-time and continuous-time linear systems are introduced. 
Necessary and sufficient conditions for the external and internal positivity 
of linear systems are given. It is shown that the reachability and 
controllability of the internally positive linear systems are not invariant 
under the state-feedbacks. By suitable choice of the state-feedbacks an 
unreachable internally positive linear systems can be made reachable and 
a controllable internally positive system can be made uncontrollable. The 
basic properties of continuous-time and discrete-time linear 
compartmental systems are derived and the relationships between the 
compartmental and positive systems are established. The realization 
problem for compartmental systems is formulated and partly solved. 

1. INTRODUCTION 

In the last decade a dynamic development in positive and compartmental systems has 
been observed [1-19, 21-24]. Roughly speaking, positive systems are systems whose 
inputs, state variables and Outputs take only nonnegative values. Examples of positive 
systems are industrial processes involving chemical reactors, heat exchangers and 
distillation columns, storage systems, compartmental systems, water and atmospheric 
pollution models. A: variety of models having positive linear system behaviour can be 
found in engineering, Management science, economics, social sciences, biology and 
medicine, etc. 
The basic mathematical tools for analysis and synthesis of linear systems are linear 
spaces and the theory of linear operators. Positive linear systems are defined on cones 
and not on linear spaces. This is why the theory of positive systems is more complicated 
and less advanced. The theory of positive and compartmental systems has some 
elements in common with theories Of linear and non-linear systems. Schematically the,
relationship between the theories of linear, non-linear, positive and compartmental. 
systems is shown in the Fig. 
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Positive linear systems, for example, satisfy the superposition principle. Limiting the 

consideration of positive linear systems only to R: (the first quarter of R") shows 

that the theory of positive linear systems has some elements in common with the theory 
of non-linear systems. An overview of the state of art in positive systems theory is given 
in the monographs [7, 18]. Compartmental systems is a special subclass of the positive 
systems. 
In this paper an overview of recent developments in positive and compartmental 
systems will be presented. Special attention will be devoted to the relationships between 
positive and compartmental systems and to the realization problem for compartmental 
systems. Besides known results some new results will be also presented. 

2. EXTERNALLY AND INTERNALLY POSITIVE SYSTEMS 

2.1. Discrete-time systems 

Let Rnxm be the set of nx m matrices with entries from the field and real numbers R 

and R" := . The set of nx m matrices with real non-negative entries will be.

denoted by R7n and R: := R.:71 . The set of non-negative integers will be denoted by 

z + . 
Consider the discrete-time linear system 

(I a) 

(lb) 

Exi+i = Az, + Bu, 

Y1 =Cxi + Du, 

where Xi E R", u, E Rni and y i E 'RP are the state, input and output vectors and 

E,Ae BE R', CE R""",DE RP" . 
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The system (1) is called singular if, det E =O O. If det E # O then premultiplying (la) 

by E we obtain the standard system 

(2a) x, 1 = Ax,+Bu, , IE 

(2b) y, = Cx, + Du, 

For the singular system (1) it is assumed that 

(3) det [Ez — A] O for some ze C (the field of complex numbers) 

Definition 1. The standard system (2) is called externally positive if for xo = O and 

every u, E R:, ŻE Z+ we have y, E R+P for ŻE Z+ . 

Theorem 1. [18] The standard system (2) is externally positive if and only if its impulse 
response matrix 

(4) 
g = {CA`13 for i > O 

D for i .0 

is non-negative g, E R+Px.m for ŻE Z+

Definition 2. The standard system (2) is called internally positive if for every X0 e R: 

and all inputs u, E R:, ŻE Z+ we have xi E R: and yi E R+1' for ŻE Z+ . 

Theorem 2. [18] The standard system (2) is internally positive if and only if 

(5) AE R:" ,BE R7,CE R ,DE R+Px`n 

The standard internally positive system (2) is always externally positive. 

2.2. Continuous-time systems. 

Consider the continuous-time linear system 

(6a) 
(6b) 

Eż=Ax±Bu 
y = Cx+ Du 

. dx 
x =—, x= x(t) E R n , u =U(t)E R fn , y= y(t)G RP are the state, input and 

dt 

output vectors, and E,Ae Rn" , BE R nx m , CE Ri" ,DE R" " . 

The system (6) is called singular if det E = O. If det E # O then premultiplying (6a) 

by .E-1 we obtain the standard system 
(7a) =Ax- Bu 
(7b) y=Cx+Du 
For the singular system (6) it is assumed that 
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(8) det [Es— Al* O for some SE C 

Definition 3. The standard system (7) is called externally positive if for 

xo = x(0) = O and every u(t)E , t ?..0 we have y(t)E , for t O 

Theorem 3. [18] The standard system (7) is externally positive if and only if its impulse 

response matrix 

(9) 
g(t)=

1CeAtB for 1>0 

D3(t) for 1=0 

is non-negative g(t)E R+P"' for t 0 , where g(t) is the Dirac impulse. 

Definition 4. The standard system (7) is called internally positive if for every xo e R: 

and all inputs u(t)E , t we have x(t)e R: and y(t)E R+P for t O. 

Theorem 4. [18] The standard system (7) is internally positive if and only if A is a 

Metzler matrix (all off-diagonal entries are non-negative) and BE R:"" 

CE R:",De 
The standard internally positive system (7) is always externally positive. The standard 
internally positive system (2) and (7) will be shortly called positive. 

2.3. Reachability and controllability of positive 1D systems without and with 
feedbacks. 

Definition 5. The positive system (2) is called h-step reachable if for every xf e R: 

(and x0 = 0) there exists a input sequence u, E i = — 1 such that x, = xf

Definition 6. The positive system (2) is called reachable if for every xf € R: (and 

x, = O) there exists he Z, and u; E R4m , i = 0,1,...,h- 1 such that x, = xf

Definition 7. The positive system (2) is called controllable if for every nonzero 

xf , x, E R. there exists he Z+ and u, E , i= 0,1,..., h-1 such that x, = xf .

Definition 8. The positive system (2) is called controllable to zero if for every x, e R: 

there exists he Z, and u, e R, i= 0,1,...,h-1 such that xi, = 0. 

Theorem 5. [6,18] The positive system (2) is n-step reachable if and only if: 
i. rank R= n 

ii. there exists a nonsingular matrix 7i consisting of n columns of R such that 

e R71 or equivalently R„ has n linearly independent columns each 

containing only one positive entry 
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where 

(10) 120 :=[B , AB Ele nm 

If the positive system (1) is reachable then it is always n-step reachable [5,6]. o 

Theorem 6. [6,18] The positive system (2) is controllable if and only if: 

the matrix R„ has n linearly independent columns each containing only one 

positive entry. 
the spectral radius p (A) of A is p (A) <1 if the transfer from xo to xf is 

allowed in an infinite number of steps and p(A) = O if the transfer from xo to 

xf is required in a finite number of steps. o 

Let us assume that for m =1 the matrices A and B of (21 have the canonical form 

o I o ••• o o 
o o 1 • • • O 

A= 

It is easy to see that for (11) 

(12) 

O O 
-a1

O 

- a2 

rank[B,AB,...,24'1 Bi= n 

O 
e g 

but the condition ii) of theorem 5 is not satisfied if at least one a, O for 

i = o,1,..., n-1. In this case the positive system (2) with (11) is not n-step reachable. 

Consider the system (2) with state-feedback f
(13) u, = v, -F Kx, 

where Kc len and v, is the new input. 

Substitution of (13) into (2) yields 
(14) x,+1 = Acx,+ Bv„ ŻE 
where 
(15) A,= A+ BK 
For (11) and 
(16) K =[ao,a„...,a„_1 ] 
the matrix (15) has the form 

(17)4  _ 

O 1 O 

O 0 1 

O - 

O 

0 0 0 • • • 1 

—a0 —a, —a2 ••• —a._, 

O 

O 

1 

O 1 0 ••• O 

O O 1 • - • O 

0 0 0 ... 1 

O 0 0 ••• 0 
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Using (17) we obtain 

[B , A B , , B]—

O 0 • • • 0 1-

O O • • 1 O 

O 1 • • O O 

1 0 • • • 0 0 

Then the conditions of theorem 5 are satisfied and the closed-loop system is n-step 

reachable. 

Therefore, the following theorem has been proved. [17,18] 

Theorem 7. Let the positive system (2) with (11) be not n-step reachable. Then the 

closed-loop system (14) with (17) is n-step reachable if the state-feedback gain matrix 

K has the form (16). o 

Corollary 1. The n-step reachability of positive system (2) with (11) is not invariant 
under the state-feedback (13). 

Remark 1. It is well-known [16] that if the pair (A, B) satisfies the condition (12) then 

it can be transformed by linear state transformation Y, = Px, , det P O to the 

canonical form (11) 

and 

A= PAP", B = PB 

[T 3 , AB B] = P[B, AB,..., A"--1 B] 

Note that the conditions of theorem 5 are satisfied if and only if P is a monomial 
matrix (in each row and column has only one positive entry and the remaining entries 
are zero). 
Consider the single-input system (2) with matrices A,B in the canonical form (11). In a 
similar way as in the reachability case it can be shown that the condition i) of theorem 6 

is not satisfied if at least one of the coefficients a, # O for i = 0,1,..., n-1 . In this case 

the positive system (2) with (11) is not controllable. The closed-loop system matrix (15) 
with (11) and state-feedback gain matrix (16) has the form (17). Note that the matrix 
(17) has all zero eigenvalues and its spectral radius p(Ac). 0. 

Therefore, the following theorem has been proved. 
Theorem 8. •Let the positive system (2) with (11) be not controllable. Then the closed-
loop system (14) with (17) is controllable in a finite number of steps if the state-
feedback gain matrix K has the form (16). o 
The considerations can be extended with some modifications for continuous-time 
positive linear systems. [18] 
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2.3. Singular linear systems 

Consider the singular discrete-time system (1) with m = p = I and 

(18) 
Ol In-I 

OJ 
R"" , A=I ° le Rnxi 

L a 

a =[ao a, •••ar_, —1 0• • •0],B= 

If (3) holds then 
CO 

O 
ER",C4 0 •••b„_,le en, D=0 

[Ez — =
1- p 

where U is the nilpotence index and cI1 are the fundamental matrices satisfying the 

relation 

A {I (the identity matrix) for i =O 

O (the zero matrix) for i # O 

Theorem 9. If the matrices E,A,B,C have the canonical form (18) and 

(19) 

then 

a; 1=0,1,...,r-1,bi 0,j=0,1,...,n-1 (n> r) 

(20) OkBe for k 

(21) CD i E R:" for iE 

(22) gi E .R,Pxm for j =1—

The proof is given in [11] 

Theorem 10. The singular system (1) with (18) is externally and internally positive if 
(19) hold. 
The proof follows from the relations (20)-(22). 
The considerations with some modifications can be extended for continuous-time 
singular systems (6) [14]. 
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3. COMPARTMENTAL SYSTEMS 

3.1. Continuous-time systems 

The compartmental systems consist of a finite number of subsystems called 
compartments [18]. Consider a compartmental system consisting of n continuous-time 
compartments. 
Denote by x,=x,(t) (i=1,2,...,n) the amount of a material of the ith compartment. Let 

F,2_0 be the output flow of the material from the jth to the ith compartment (ij) and 
Fo, be the output flow of the material from the ith compartment to the environment. Let 
ui=u,(t) be the input flow of the material to the ith compartment from the environment. It 
is assumed that the input material is mixed immediately with material being in the 
compartment. From the balance of material of the ith compartment we have the 
following differential equation 

n 

(23) = E(fi; - F,)+ u, _ Fw for i=1,2,...,n 
J J 

1=1
jol 

It is assumed that the flow Fu depends linearly on xj, i.e. 

(24) Ftf--fiixi for i=0,1,...,n; j=1,2,...,n 

where L is a coefficient depending, in the general case, on xj and the time instant t. 
The system is linear ifk is independent of xi and it is additionally time-invariant if 
is independent of t. 
Using (23) for i=1,2,...,n and (24) we obtain the state equation of the compartmental 
system 
(25) ż=Fx±Bu 
where 

= (26) 

X, • 

X, 

X,,_ 

u= 

u, 

U2 

U,, 

„ F = 

_ffl J12 • " fin 

.1.21 1 .22 • " J r2n 

• 
•• 

Ini f„2 ••• f„„ 

L:= —f,,—± f j„B = I, 

Note that in every time instant the output flow of a compartment cannot be greater than 
the whole mass of material being inside the compartment, i.e. 
(27) f O and fija) for 

...i 4

Definition 9. The matrix F satisfying the conditions (27) is called the compartmental 
matrix of the continuous-time system. 
The first condition (27) says that the sum of entries of every column of the matrix F is 
not positive. The compartmental matrix is a particular case of the Metzler matrix, since 
f u?_0 for 
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The output equation has the form 
(28) 
where Ce R+P". 
Therefore, the continuous-time compartmental 
internally positive systems. 

3.2. Discrete-time systems 

y=Cx 

systems are a particular case of the 

Consider a compartmental system consisting of n discrete-time compartments. 
In discrete-time compartmental systems the flows of materials are considered only in 
discrete time instants It is assumed that the neighbouring time instants are 
shifted from each other by the unit of time, i. e. tk+1=tk+1. 
Let x,(k), 1=1,2,...,n be the amount of a material in the ith compartment at the time 
instant k. Denote by Gy(k) the output flow of the material from the jth to the ith 
compartment between the kth and (k+l)th time instant and by Goi(k) the output flow of 
material from the ith (i=1,2,...,n) compartment to the environment. It is assumed that 
G,j(k) depends linearly on xj(k), i.e. 

(29) Gy(k)=gijxj(k) for i=0,1,...,n; j =1,2, ... , n 

where go is a coefficient depending, in the general case, on x and the discrete-time 
instant k. 
The system is linear if g,7 is independent of xj(k) and it is additionally time-invariant if 
go is independent of k. 
Let p1(k) be the input flow of the material to the ith compartment from the environment 
at the time instant k. 
From the balance of material of the ith compartment at the time instant k+1 we have 
the following difference equation 

(30) x,(k + 1) =1 g ox (k) + g „x,(k) + u,(k) 
j=1 joi 

where gox,(k) is the amount of material in the i-th compartment at the time instant k, 
i.e. 

(31) gi,x,(k)= x,(k)— g 0,x ,(k) — t g r x,(k)= 

From (31) we have 
(32) 

( 
1-  g01 - gjf 

i=1 

= l — g0, —

Note that if u(k)=0 then the output flow of material at the time instant k±1 of the 
jth compartment cannot be greater than the whole mass of material being inside the 
compartment at the time instant k, i. e. 

x,(k) 

(33) t g 51 for j=1,2 ..... n and gi O for i= j 
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Definition 10. The matrix Ge Cn satisfying the conditions (33) is called the 

compartmental matrix of the discrete-time system. 
The first condition (33) says that the sum of entries of every column of the matrix G is 

not greater 1. 
Using (30) for i=1,2,...,n we obtain the state equation of the compartmental system 

(34a) 
where 

x(k)= 

x,(k) 

x2 (k) 

x(k+1)=Gx(k)+Bu(k) 

, G= 

gll gl2 

g2I g22 g,, 

g., g., 

The output equation of the compartmental system has the form 

,B = 1, 

(34b) y(k)=Cx(k) 

where Ce 1?:" . 
The discrete-time compartmental systems are particular cases of the internally positive 
systems. 

4. RELATIONSHIP BETWEEN POSITIVE AND 
COMPARTMENTAL SYSTEMS 

Let M be the set of Metzler matrices A = [a ,] E R"'" satisfying the condition 

(35) au O for i j; i, j = 1,..., n , 

and C be the set of compartmental matrices A = [a]E R"'" satisfying the 

conditions (35) and 

(36) for j =1,...,n 

A diagonal matrix D = diag[d,,d2,...,d„] is called positive if d,> 0 for 

The matrix A E R"'" of the system (7) is asymptotically stable if and only if all its 
eigenvalues have negative real, parts [18]. 

T Eheorem 11. Let A=[a R — be asymptotically stable. Then AE M if and only 

if there exists a positive diagonal matrix D such that DAD' E C. 
Proof. By assumption the matrix A is asymptotically stable and therefore it is non-
singular. To prove that if A E M then there exists a positive diagonal matrix D such 

that DATY' E C let us define 
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(37) .D=diagi- diag[d,,d„...,d„] 

It is well-known [18] that - E R:-  and all columns of — are nonzero. 

Therefore from (37) we have d, > 0 for i = 1,..., n, and the matrix D defined by (37) 

is positive diagonal. Using (37) we obtain 

(38) 
DAD' = 

a11

a21* a„ ••• a,„ *:

a 
d2

d1 

12 

 - 

_a arr, am, da: a 

The matrix (38) satisfies the condition (36) and it belongs to the set C since 
=-[1,1,...,1]A-11 AD-1 =-[1,1,...,1)D-1

Ł" ii = - 
d,'

From definitions of the sets M and C it follows that if DAD" E C 

From Theorem 11 we have the following important corollary [3]. 

then AE M. 
LI 

Corollary 2. A positive asymptotically stable system (7) is diagonally equivalent to a 
suitable compartmental system. 

The above considerations can be extended for discrete-time systems as follows. Let C, 

b ee the set of matrices A=[a R. satisfying the conditions 
Y 

(39) a„ for j = 1,..., n 
- 

The discrete-time system (2) is asymptotically stable if and only if all eigenvalues of its 
matrix A have moduli less 1(18]. 

Theorem 12. Let A=[aje R"-  be asymptotically. Then AE R:-  if and only if 

there exists a positive diagonal matrix D„ such that DAD" e C. 

Proof. By assumption the matrix A is asymptotically stable and therefore the matrix 
[I — A] is non-singular. Let use define 

(40) D, = A1-'1=

It is well-known [18] that [./ — e R7" and all columns of [./. — Ar are nonzero. 
Hence the matrix (40) is positive diagonal. 

The matrix A satisfies the conditions (39) if and only if 
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[1,1,...,1][1 — A] 

and the condition D„AD;' E C, is equivalent to the condition 

[1,1,...,11Da[/ — A]D: Using (40) we may write 

[1,1,...,1]D, [I — A]D; = [d ,, d „..., d .][I — 24]D;I = 

1 1 1 
=[1,1,...,1][I — [I — = [1,1,...,1]D;' = [ > [0,0,...,0] 

Therefore, the matrix DAD" belongs to the set Cd . 

From Theorem 12 we have the following corollary. 

Corollary 3. A positive asymptotically stable system (2) is diagonally equivalent to a 
suitable compartmental system. 

5. REALIZATION PROBLEM OF POSITIVE AND 
COMPARTMENTAL SYSTEMS 

5.1. Positive systems 

The transfer matrix of the discrete-time system (2) is given by 

(41) T(z)= C[Iz— Ar' B+ DE RP"m (Z) 

where R" (z) is the set of proper rational matrices with real coefficients. 

For the given matrices A, B, C, D there exists exactly one transfer matrix (41). On 

the contrary, for a given matrix T (z)e R" (z) there exist many different matrices 

A, B, C and D even of different dimensions that satisfy the equality (41). 

Definition 11. Matrices A,B,C and D satisfying the equality (41) are called a 

realisation of a given transfer function matrix T (z) . D 

Definition 12. A realisation (A, B, C, D) is called minimal if the matrix A has 

. minimal dimension among all realisations of T (z) . 
The positive realisation problem of discrete-time systems can be formulated as follows. 
Given a proper rational transfer matrix T(z)E RP`m (z), find a positive realisation 

AE R:" , B€ Rym, CE B±P"n , DE R+Pxm of T (z) . 

For a given matrix T (z) e RP*m (Z) there always exists a realisation 

AE R' , Be R", CE RP"" , DE R'' but there does not always exist a positive 
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b 
realisation. For example, for the transfer function T(z)= —, (a> 0), there exists a 

z + a 
realisation of the form A = [—a], B = [b],C = [1],D = [0] , but it is not positive if 

a> O. The problem arises of under which conditions a given matrix T(z) has a 

positive realisation. 
In a similar way the realization problem can be stated for continuous-time linear 
systems (7). In this case the condition Au R,"'" should be replaced by the condition 

Au M (the set of Metzler matrices): 
The following theorems formulate the necessary and sufficient conditions for the 
existence of positive realizations of a given transfer function T(p), where p = z for 

the discrete-time system and p= s for the continuous-time system [3,18]. 

Theorem 13. Let (F, g, h} be any minimal realization of dimension 17 of the transfer 

function T(z). Then there exists a positive realization of dimension N n of T(z) 

if and only if there exist matrices Au R:" ,b e R:, Cu R.'" and PE R:nrk such that 

(42) FP = PA, g = Pb,c = hP 

The positive realization of T(z) is given by IA, b, c}. 

Theorem 14. Let IF, g, h} be any minimal realization of dimension n of the transfer 

function T(s). Then there exists a positive realization of dimension N of T(s) if 

and only if there exists a e R and matrices Au R:",be R:, CE R" and PE R:" 
such that 
(43) (F + aI)P = PA, g = Pb,c = hP 

The positive realization of T(s) is given by IA — aI,b,c}. 

5.2. Compartmental systems 

Let be given a transfer function T(s). Under which conditions there exists a realization 

{A,b,c} of some finite dimension of the compartmental system 

(44a) 
(44b) 

such that T(s). c[ls— Arb . 
The following theorem given the necessary and sufficient conditions for T(s) to be the 
transfer function of a compartmental system [3]. 

i= Ax+bu 
y = cx 
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Theorem 15. A given asymptotically stable rational function T(s) is a transfer 

function of a compartmental system if and only if: 

1) the impulse response g(t) is such that g(t) > 0 for every t > 0 and 

2) the pole p of T(s) with maximal real part is negative and unique. 

Proof. Necessity. Let {A, b, c} be a positive realization of T(s) . For a sufficiently 

large value of a E R the matrix .71. := A + alE R7 . Then 

(45) g(t)= ceb= ce'b= e'ceb= e 
c (AO' b

- 
k.o k! 

From (45) the condition 1) immediately follows since at least one coefficient 

cA k b > 0 . By assumption T(s) is asymptotically stable. Hence the pole p of T(s) 
with maximal real part has negative real part. It can be shown [3] that p is real 

negative and unique. 

Sufficiency. Since the system is asymptotically stable then by Corollary 2 without loss 
of generality we can consider positive systems instead of compartmental systems. 

To simplify the considerations we assume that the transfer function f(s) = T(s + p) 
has pole with maximal real part is equal to zero. There exists a positive realization of 

T(s) if and only if there exists a positive realization of r(s) [3,18]. It can be shown 

[3] that if the conditions 1) and 2) are satisfied then exists a positive realization 

{A,b, c} of T(s) ii 
In [3] necessary and sufficient conditions have been established for a third-order 
transfer function T(z) with positive real poles to be that of a positive system of the 

same order. 

Theorem 16. [3] Let T(s) be a transfer function with distinct-real poles 

o > 2, > > 23 and let {F, g, h} be any minimal realization of T(s). Then T(s) 
has a realization with three compartments if and only if the following conditions hold: 
1) h(F — 221)(F — 23I)g > O 

2) hg O 

3) h(F erl)g ?_. O 

4) h(F ±al)g> O for all a such that —23 a a-
where 

2, +22 23 —20, — 202 4-( -2.2)(2, — 23) 
= 

3 
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The problem of positive linear observers for linear compartmental systems has been 
formulated and solved in [9]. . 

6. Concluding remarks 

The notions of the externally and internally positive standard and singular discrete-time 
and continuous-time linear systems have been introduced. Necessary and sufficient 
conditions for the external and internal positivity of linear systems have been 
established. 
It has been shown that: 
1. the reachability and controllability of positive linear systems are not invariant under 

the state — feedbacks. 
2. for an unreachable (uncontrollable) positive linear system it is possible to choose a 

suitable state — feedback so that the closed — loop system is reachable 
(controllable). 

The relationships between the positive and compartmental systems have been 
established. The realization problem for positive and compartmental systems has been 
formulated and partly solved. 
The presented considerations can be easily extended for multi — input continuous-time 
and discrete-time and also for two dimensional (2D) linear systems [10,14,16,20]. An 
open problem is an extension of the considerations for singular 2D linear systOts. 
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