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UNCERTAINTY 
IN DISCRETE-CONTINUOUS PROJECT 

SCHEDULING 

Abstract. The problem of adjusting the discrete-continuous schedule in ' 

case of disturbances is presented. The sources of disturbances are 
discussed. A heuristic approach to adjusting the schedule to the varying 
available amount of the continuous resource is presented. A 
computational experiment is presented to illustrate a general reactive 
scheduling policy. 
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1. INTRODUCTION 
In the scheduling theory the aim of solving a problem is to find an assignment of 

resources to activities in time to minimise a chosen criterion. In practice, however it 

often happens that execution of the schedule is not possible. Perturbations 'may be 

caused by fluctuation of resources or unexpected changes in the characteristics of an 
activity. Finally, some activity may simply be late due to unknown reasons. In such 

cases a question arises: how to update the schedule in order to ensure its feasibility and 

optimality. This problem is lately considered in the literature. Herroelen and Leus [1] 
present literature review and a survey of existing approaches. One of the possible 

approaches to the problem of practical application of schedules is to create a schedule 

that remains feasible and optimal (sub-optimal) even in case of unexpected events 

during execution [6]. 
In this paper we relate the problem of schedule execution to discrete-continuous project 

scheduling problems. 
In Section 2 the problem of project scheduling with discrete and continuous resources is 

presented and exact as well as heuristic solution approaches are characterized. In 
Section 3 the problem of disturbances during execution of deterministic schedules is 
discussed, while in Section 4 a special case of continuous resource variation is 

presented. Section 5 describes an approach to constructing reactive schedules when 
delay or early completion of an activity is observed. This approach is illustrated by a 
computational experiment presented in Section 6. Conclusions and directions for further 
research are provided in Section 7. 

2. PROBLEM FORMULATION 
The problem of discrete-continuous project scheduling is defined as follows [3]. We
consider a project consisting of n precedence- and resource-constrained,
nonpreemptable activities that require renewable resources of two types: discrete and 
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continuous ones. We assume m discrete resources are available and vector ri = [ra, ro, 
i= 1,..., n, determines the (fixed) discrete resource requirements of activity i. 

The total number of units of the discrete resource j, j = 1,..., m, is limited by R. The 
single continuous, renewable resource can be allotted to activities in (arbitrary) amounts 
from the interval [0, 1]. The amount (unknown in advance) of the continuous resource 

allotted to activity i at time t determines the processing rate of activity i as it is 

described by the following equation: 

(t)— '1'1
(0 

= x1(o)=.o, (1) 
dt 

where zi(t) is the state of activity i at time t, 

J1  is a continuous, nondecreasing function, where fi(o)= o, 

u,(t) is the amount of the continuous resource allotted to activity i at time t, 

Ci is the completion time (unknown in advance) of activity i, 

is the processing demand (final state) of activity i. 

State z1(t) of activity i at time t is an objective „measure of work related to the 
processing of activity i up to time t. It may denote, for example, the number of man-
hours already spent on processing of activity i, the number of standard instructions in 
processing of computer program i, and so on. All activities are available at the start of 
the process. 

The problem is to find a feasible assignment of discrete resources and, 
simultaneously, a continuous resource allocation which minimise the schedule length, 
le. the project duration, M= max{Ci, i= 1,2,..., n}. The continuous resource 
allocation is defined by a piece-wise continuous', non-negative vector function 
U*( (t)= [u T (t)uI(t),...,u*,i(t)] whose values u* = are (continuous) 

resource allocations corresponding to m* — the minimal value of M. 
Problems of this type where a set of identical parallel machines was the single 

discrete resource was defined in [4] and examined for nonpreemptable, independent 
activities. 
Let us divide a feasible schedule (i.e. a solution of a discrete-continuous project 
scheduling problem) into p n intervals of lengths Mk, k= 1,...,p, defined by the 
completion times of the consecutive activities. 

Let Zk denote the ćombination of activities corresponding to the k-th interval. Thus, a 
feasible sequence S of combinations Zk, k= 1,2,..., p, is associated with each feasible 
schedule. The feasibility of such a sequence requires that: 
1 . the number of units of the discrete resource j, j = 1,..., m, assigned to all activities in 

combination Zk, k = 1,. .., p, does not exceed Rj, i.e. E r Ri  „j = 
Zk

k=
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2. each activity appears in at least one combination, 

3. precedence constraints between activities are satisfied, 

4. nonpreemptability of each activity is guaranteed. 

The last condition requires that each activity appeared in exactly one or in 
consecutive combinations in S. 

It has been proved in [4] that for convex processing rate functions f, i= 1, 2,..., n, a 

makespan optimal schedule is obtained by allotting the total amount of the continuous 

resource to one activity at a time only. Concluding, in an optimal schedule activities are 

ordered in a sequence fulfilling the precedence constraints and the total amount of the 

continuous resource is allotted to each activity. Of course, if we assume R1, i= 1, 

2,..., n, j = 1, 2,..., m, the discrete resource constraints are fulfilled, because only one 

activity is performed at a time. For concave processing rate functions in a makespan 

optimal schedule as many activities as possible are performed in parallel (see [4]). In 

this case for a given feasible sequence S one can find an optimal division of processing 

demands of activities, , i = 1,2,..., n, among combinations in S, i.e. a division which 

leads to a minimum length schedule from among all feasible schedules generated by S. 

To this end a nonlinear programming problem can be formulated in which the sum of 

the minimum-length intervals (i.e. parts of a feasible schedule) generated by 

consecutive combinations in S, as functions of the {xa} Z where Kk is a part of 
kek ' 

activity i processed in combination Zk, is minimized subject to the constraints that each 

activity has to be completed. For concave processing rates 4, i= n, it is sufficient 

to consider feasible schedules in which the resource allocations among activities remain 
constant in each interval k, k= 1, 2,..., p. In the sequel we will assume that f, 
i= 1,2,..., n, are concave. 

Let M*k (ićk ) be the mi inimukm length of the part of the schedule generated by Zk G 5,

as a function of ick k z . Let K, be the set of all indices of Zk's such that i e Zk. 

The following mathematical programming problem is obtained to find an optimal 

demand division of activities for a given feasible sequence S. 

Problem P 

Minimize 

subject to 

114({4}11:-1)=
k=1 

Yik 7' 5-4 
keKi

0, 

i= l,2,..., ti 

i = 1,2,..., n; k E Ki 

where Ark (kk) is calculated as a unique positive root of the equation: 

(2) 

(3) 
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(4) 
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•E fi-1(Yik imk)= 1 (5) 
iZk 

which can be solved analytically for some important cases (see [7]). 
Of course, constraints (3) correspond to the condition of fulfilling processing demands 
of all activities. It was proved by Węglarz in [7] that the objective function (2) is always 
a convex function. In consequence, our problem is to minimize a convex function 
subject to linear constraints. 
After finding an optimal division .Kk , i = 1, 2,.. ., n, k e K, of 's the corresponding' 

continuous resource allocation for combination Zk is given as 

u* f.-1(is ), ie Zk ik ik (6) 

Thus, an optimal continuous resource allocation for a given feasible sequence can be 
calculated by solving Problem P. In consequence, a globally optimal schedule can be 
found by solving the continuous resource allocation problem optimally for all feasible 
sequences and choosing a schedule with the minimum length. In this sense the process 
of finding an optimal schedule can be viewed as a search process over the space of all 
feasible sequences for a given problem instance. Unfortunately, in general, the number 
of all feasible sequences grows exponentially with the number of activities. Therefore it 
is justified to apply local search metaheuristics such as Simulated Annealing (SA), Tabu 
Search (TS) or Genetic Algorithms (GA) operating on a space of all feasible 
sequences [2]. 

3. PRACTICAL ASPECTS OF PROJECT SCHEDULING 
The methodology presented above assumes complete information about the scheduling 
problem and a static deterministic environment within which the schedule will be 
executed. This is a general characteristic of the deterministic approaches to scheduling. 
A schedule constructed basing on such assumptions will be called a predictive one. 
However, in practical applications the problem parameters are subject to uncertainty. 
Quite often it may be difficult to predict the processing demand and processing rate 
function of the activities. In such situation estimation from analysis of historical data is 
used to build the predictive schedule. Herroelen and Leus [1] present an extensive 
survey of approaches to project scheduling under uncertainty. They examine the 
following methods: reactive scheduling, stochastic project scheduling, stochastic GERT 
network scheduling, fuzzy project scheduling, robust (proactive) scheduling and 
sensitivity analysis'. 
In this paper we would like to exploit some properties of discrete-continuous scheduling 
in order to create good reactive schedules without changing the discrete part of the 
Predictive schedule and thus saving a lot of computational time. 
By a disturbance in a schedule we will understand a situation where a deviation of the 
completion time of an activity is observed (delayed or early completion). There may be 
several reasons of disturbances. Let us recall that a problem instance is characterised by 
the following parameters: (t), i = 1, ..., n, f„ i = 1, ..., n, ru, i = 1, ..., n, j = 1, m, 

1 , ..., m, and U, where U is the total available amount of the continuous resource 
available at time t. Notice, that while constructing the schedule we have assumed that 
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U= 1, however during the schedule execution this amount may vary. Variation of any 

of the parameters listed above may cause disturbances in execution of the predictive 

schedule. If the processing demand ijt) of job i changes, then its processing time also 

changes. Availability of resources is the most common source if disturbances. It is e.a' sy 

to observe that variation in the available number of units of a discrete resource may not 
influence the schedule, while any decrease of the available amount of the continuous 
resource must result in increased processing time of at least ,one activity Similarly, 

resource requirements of an activity may not influence the schedule in case of discrete 

resources. In case of continuous resources this demand is represented by the processing 

rate function. A change of the processing rate function usually results in different than 

expected completion time. On the other hand, however if a critical discrete resource is 

not available, the delays may be significant. 

The practical execution of a project predictive schedule in the presence of disturbances 

is impossible without some additional assumptions. In discrete-continuous project 

scheduling we assume that execution of activities meets the following rules: 

the order of the starting times of activities corresponds to the order defined in the 

predictive schedule; 

— the continuous and discrete resource allocation corresponds to the allocation 
established in the predictive schedule; 

the continuous resource allocation may change only at the completion time of the 

activity completed next in the predictive schedule; 

— if the total number of units of a critical discrete resource or total amount of the 
continuous resource is insufficient, the execution of all activities is suspended; 

The abovementioned rules can be formulated in the form of the following 
RealExecution procedure: 

procedure RealExecution; 
begin 
set k=1; 
repeat 

basing on the feasible sequence S determine activity a which is going to be 

completed in combination Zk; 

execute the activities from the combination Zk (allocate the discrete and 
continuous resources according to the predictive schedule); 

until the resource availability of any resource is insufficient suspend the 
execution of all activities; 
wait until activity a is completed; 
set kk-fl; 

until k<p 
end 
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4. THE CASE OF THECONTINUOUS RESOURCE VARIATION 
We have mentioned in Section 3 that the variation of the available amount of the 
continuous resource must influence the processing time of at least one activity. We will 
show below how to optimally react to this type of disturbances. 

Let us consider a predictive schedule of the form presented in Fig. 1. 

t = 

Fig. 1. A predictive schedule 

At some point in time, say t=Z1, the available amount of the continuous resource 
decreases to LP <1 . We will show that for identical power processing rate functions 

1 / f(u,)=Auj)= z a, cc lin order to obtain an optimal schedule for the remaining 
activities it is enough to update the assignment of the continuous resource in 
consecutive intervals, so that: u'ik = U'uik. Let us ' observe that in each interval 
corresponding to 4 k> the following equations hold: 

a 

lE Z k( k) 

since we assume that the discrete part of the predictive schedule can not change, we 
have also 

„a 

E 
u, 

zk \ m, i
thus 

ma 

(Mk k • and finally u •ik = 
xik xik 

= U'=Ułuik. 

,114k ••Alk 

This statement however is not true for arbitrary processing rate functions. Let us notice 
that for two jobs with f i(u) = u and f 2(u)= Jr the procedure described above (i.e. 
411'1-Pul and te2=U'u2) will result in the following inconsistency: 

  Mk Mk .7 2 Mk= = 
Ut 
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5. THE CASE OF LATE/ EARLY ACTIVITIES 
In this section we will describe the method where the continuous resource allocation is
modified in response to the late or early completion of activities performed according to 
the predictive schedule. As it was already mentioned the given feasible sequence of 

activities will remain unchanged. Otherwise the feasibility of the allocation of the 
discrete resources could be violated. 

The proposed method is dedicated to the case where functions f i = 1, 2,—, a, are 
concave. Moreover, the method bases on the assumption that the present state of an 
activity is unknown during its execution. Although the proposed model of activity 
execution (1) allows changing the allocation of the continuous resource to an activity 
during its execution, we will assume that this allocation may be modified at the 
completion time of an activity only. 

Let S consisting of p combinations represent a feasible sequence for the given instance 
of the project scheduling problem. Moreover, let us assume that the optimal demand 
division of activities as well as optimal continuous resource allocation are known for S. 

The idea of the method is based on the assumption that any disturbances (late or early 
completion of an activity) in the execution of the schedule result from an unforeseen 
change of the processing demand of an activity. The adequate reactive allocation of the 
continuous resource to the executed activities bases on periodically modified 
information on the processing demand of the portion of these activities that is not yet 
completed. To this end the actual processing demands of the executed activities are 
measured and compared with the processing demands assumed in the predictive 
schedule. 
The method is described in details in the following ReactiveExecution procedure: 

procedure R ea ctive Executi on ; 

begin 
set k:=1; 

repeat 
basing on the feasible sequence S determine activity a which is going to be 
finished in combination Zk; 

if any value of Zk (iE Zk) differs from the value from predictive schedule, 

compute a new allocation of the continuous resource using (5) and (6); 
execute the activities from the combination Zk (allocate the discrete resources 
according to the predictive schedule; the continuous resource allócate to 
activities in computed amounts;); 
until the resource availability of any resource is insufficient suspend the 
execution of all activities; 
wait until any activity is completed; (let b is the completed activity) 

compute the actual execution time and completed portion realYik (k Zk) 
executed activities; 

if (a=b) for each activity i (k Zol) set := + reaff,* - Yik ; 

else begin 
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for each combination Z/ (/ :/E Kb A I ..1c) set := 

determine max s (s:beZs); 

if (s<p) for each i (Je Zs+1 i<>b) 1,+1 15+1 + ; 

for /:=s downto k+1 

begin 

set Z:= 

for each activity i (k Zi) set

end; 

if (realY ak < ak ) 

for each activity i (E4+1) set Yik+1 := 5e /k.,1 + reab — ; 

end; 

set k:=k+1; 

until k<p 
end. 

Notice, that in most practical situations the above procedure will calculate the new 
continuous resource allocation after the completion of each activity. Thus such a 
strongly reactive approach is applicable only to those cases where the modified 
continuous resource allocation can be found analytically. 

6. COMPUTATIONAL EXPERIMENTS 
In the computational experiments, we have analysed the most general and difficult case 
where the processing time of each activity is uncertain. We assume that set of R 
machines is the only discrete resource and the continuous resource is available in 

amount U= 1. The processing rate function for each activity f has the form j = ul / 2 , 

1= 1, 2 ,..., n and processing demands , i = 1, 2, ..., n were generated randomly with 
the uniform distribution from the interval [1..100]. To simulate the uncertainty in the 
discrete-continuous projects we generated the actual processing demand of each job 
With the normal distribution N( i i coef źi ), where coef is a parameter which allows 

controlling the value of the standard deviation (coef> 0). The other parameters of the 
Problem remain unchanged. We have tested various combinations of problem sizes 
(nE (20, 30), R e (2, 3, 5, 10)) and values of the coefficient coef (coef e (0.1, 0.2, 0.3)). 
For each combination of the input data 100 instances of the problem were generated 
randomly. 
The value of the makespan (ReactC„,a,c) obtained using ReactiveExecution procedure 
was compared with the corresponding value of the schedule length (RealCmax) given by 
the RealExecution procedure and with the makespan (SolverCm.,) obtained by optimal 
resource allocation (the related convex mathematical programming problem was solved 
by CFSQP solver [5]). In Table I. the average relative deviation from the SolverCn,a,, 
(avgRD) as well as the maximum relative deviation from the SolverCn. (maxRD) are 
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presented. In column Worse the number of instances where ReactCmax > RealCm , is 

showed. 

Problem size RealC„,:„, 

(avgRD/maxRD) 
ReactCmax 

(avgRD/maxRD) 

Worse 

(#) 

n=20, R=2 

Coef=0.1 0.028/0.097 0.014/0.049 17 

Coef=0.2 0.061/0.189 0.033/0.090 22 

Coef=0.3 0.088/0.234 0.049/0.128 22 

n=20, R=3 

Coef=0.1 0.050/0.176 0.027/0.166 21 

Coef=0.2 0.108/0.445 0.056/0.314 15 

Coef=0.3 0.157/0.690 0.073/0.148 15 . 

n=20, R=5 

Coef=0.1 0.083/0.2'71 0.043/0.139 20 

Coef=0.2 0.172/0.543 0.074/0.202 7 

Coef=0 .3 0.254/0.824 0.100/0.232 2 

n=30, R=2 

Coef=0.1 0.029/0.087 0.014/0.060 21 

Coef=0.2 0.067/0.197 0.033/0.080 19 

Coef=0.3 0.105/0.286 0.052/0.134 14 

n=30, R=3 

Coef---0.1 0.048/0.133 0.027/0.074 19 

Coef=0 .2 0.103/0.269 0.057/0.192 12 

Coef=0.3 0,153/0.397 0,079/0.185 9 

n-30, R=5 

' Coef=0.1 0.074/0.201 0.046/0.175 19 

Coef=0.2 0.155/0.423 0.089/0.190 17 

Coef=0.3 0.230/0.638 0.114/0.221 10 

n=30, R=10 

Coef=0 .1 0.121/0.442 0.060/0.231 9 

Coef=0.2 0.245/0.866 0,106/0.281 , 5 

Coef=0.3 0.352/1.254 0.135/0.291 1 

Table 1. Results of the computational experiments . 

The presented results show that in most cases the proposed reactive contiguous resource 

allocation generates better schedules than the procedure based on the predictive 

schedule only. As it was easy to predict, the bigger coefficient coef the worse the 

resulting schedule for both execution procedures compared. Surprisingly in the highly 
unpredictable environment of the tests the instances where the RealCm. < ReactCm. are 
quite rare. 

7. CONCLUSIONS 
The proposed heuristic generates results satisfactory from the practical point of view. 
The maximum relative deviation from the schedule with optimum resource allocation 
may exceed 30%, but simple realisation of the predictive schedule may result in much 
worse schedules (125% deviation from optimum). Although in some instances the 
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RealCmax is better than ReactCmax, this happens rarely and on average the heuristic 
outperforms the RealExecution procedure. 

Further research will be carried out to extend the proposed approach to other sources of 
schedule disturbances. The method will be generalised to address problems with 
disturbances of continuous as well as discrete resources. 
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