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EXPERIMENTS AND RESULTS IN MOBILE 
ROBOT NAVIGATION WITH A 

FUZZY-GENETIC CONTROLLER 

Abstract ; In this article, a behaviour-based control system for mobile 
robot navigation is presented. It uses fuzzy rules to map current sensor , 
readings onto robot actions. A genetic classifier system is used to 
learn rules. The fuzzy rules are evolved in a computer simulation, and 
then used by controllers implemented on real mobile robots. Results of 
experiments are provided, showing that the proposed method can find 
rules for mobile robot navigation. 

1. INTRODUCTION 

Behaviour-based architectures are widely used to control autonomous mobile robots 
[1]. They involve decomposition of the whole navigation system into a number 
of simple units, called behaviours. Each behaviour produces actions aimed at 
achieving a particular goal, such as obstacle avoidance and goal seeking. One of 
the frameworks used for practical implementation of individual behaviour units is 
the fuzzy logic. Fuzzy controllers are a convenient choice, because they are simple, 
fast, and they do not require an analytical model of the system to be controlled 
19]. However, in the case of a mobile robot, the manual design of a controller 
can be quite complicated, because of the high number of rules needed to define an 
unambiguous response for all possible combinations of the input stimuli. Because of 
that difficulty, numerous approaches to learning and adaptation in fuzzy controllers 
have emerged, mostly focusing on the reinforcement learning for tuning of the fuzzy 
membership functions [3], or learning the fuzzy rules themselves [8], and on artificial 
neural networks [7]. An alternative approach to learning in robotic systems is the 
use of genetic algorithms (GA). Learning and tuning of mobile robot's behaviours 
by means of GA has been proposed for crisp [10] and fuzzy-type [6] rules. 
This article describes an approach to design the core part of mobile robot's naviga-
tion system - the reactive controller providing the obstacle avoidance behaviours, 
thus responsible for the safety of the vehicle. The controller uses fuzzy if -then 
rules to navigate from a given start position to a given goal position, while avoiding 
collisions with obstacles. The start and goal points are provided by a human oper-
ator or a path planner, being a higher-level module of the navigation system. The 
proposed controller is evolved in a realistic simulation, by using a genetic-based 
machine learning method, the classifier system with genetic algorithm. 
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2. FUZZY LOGIC CONTROLLER OF THE MOBILE ROBOT 

To control the mobile robot a classical (Mamdani type) fuzzy controller [4] has 
been introduced. It consists of: 

• a fuzzifier, which maps sensor readings onto fuzzy sets, 

• a rule base, made of the fuzzy if  rules, 

• an inference module, which uses rules and membership functions to map input 
fuzzy sets onto output fuzzy sets, 

• a defuzzifier, which maps fuzzy output sets onto crisp output values. 

The controller must coordinate the execution of behaviours aimed at achievement 
of two possibly conflicting objectives: getting to the goal, and stay away from ob-
stacles. For both of these objectives separate rule bases have been defined. Because 
of that, the classical fuzzy controller has been extended by adding a behaviour arbi-
tration mechanism. The role of this selector is to choose the rule base appropriate 
for the current situation of the robot. There are three rule bases: one with rules 
for getting to the goal (BG), and two for obstacle avoidance — one for left side wall 
following (BL), and another one for right side wall follOWing (BR): To alterna-
tive selection mechanisms have been implemented. In the first selector, during the 
robot motion its distance to the goal is memorized. If the robot is getting to .the 
goal, this distance decreases, but when the robot is maneuvering in the presence 
of obstacles, the distance to the goal usually increases. The selector recognizes 
this moment and activates one of the obstacle avoidance rule bases: Which one 
is activated (BR or BL), depends on the current bearing to the goal. The active 
base is switched back to BG, when the distance to the goal becomes smaller than 
the last memorized value. The second type of selector analyses only the bearing 
to the goal. If the bearing is greater than 145°, the selector switches to obstacle 
avoidance. When the bearing becomes smaller than 45°, it switches back to the 
goal seeking behaviour. 
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Figure 1: Definitions of the linguistic variables 
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used. It is rather hard to use directly all the individual sensor readings as inputs 

to the fuzzy controller. Thus, the sensors are grouped to reduce the number of in-

puts, and the number of rules in the controller [11]. All the sensors within a group 

constitute single input of the controller. For sonars of a given group the shortest 

measured distance is picked up. This value is then verified by the readings of the 

IR proximity sensors: if the proximity sensors find an obstacle closer than the value 

given by sonars, the IR reading is used as the controller input. The IR reading is 

also used when there is no data from sonars, e.g. due to specular reflections. 

For the fuzzification of the crisp values of the input vector X, the controller uses 

linguistic variables given by the membership functions of -y, L, and t type. The 

following input linguistic variables have been defined (Fig. 1): 

Distance - used for the fuzzification of distances from all groups of sensors. One 

of two possible definitions can be used alternatively - with two and three 

fuzzy sets. The membership functions may be adjusted according to the 

current type of surroundings. If for some given period of time the distance 

readings from sensor groups in the left and right sides of the robot are shorter 

than half of the sensor range, then the value 1,„„ is set to Lax = . This 

scaling enables more precise steering of the robot in narrow corridors [12]. 

Heading - used for fuzzification of the bearing to the goal. 

The output linguistic variables have been defined as: Lin Vel - linear velocity 'ur , 
and Rot Vel - angular velocity cor of the robot. These values are then converted 
into velocities of the driven wheels. Mapping of the fuzzy sets onto crisp values of 
the output vector Y = (v, w) is performed by using the center of gravity method. 

3. GENETIC CLASSIFIER SYSTEM 

In the proposed mobile robot controller a classifier system with genetic algorithm [5] 
has been used to generate fuzzy if -then rules. Fuzzy logic rules are represented 
by classifiers. The linguistic variables and membership functions defined in the 
system do not undergo adaptation. The classifiers are production rules, which take 
the form of fixed-length strings, encoded with binary values. 
The external stimuli transmitted from sensors are also encoded as binary strings. 
The classifier consists of an antecedent having the same form as the encoded exter-
nal stimuli (perception), and a message in which information about the consequent 
Part of the fuzzy rule is encoded. If the antecedent of a classifier matches the 
current perception, this classifier sends it's message to the rule base. The message 
iS divided into two parts. The first part indicates the number of the fuzzy set of 
the linguistic variable Lin Vel, the second part is the number of the fuzzy set of 
the variable RotVel. The numbers of fuzzy sets are linearly encoded. The whole 
Classifier is a fuzzy rule of the controller, e.g. for a robot with three groups of 
sensors a classifier can be like this: 

10101110101011111110101 
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The fuzzy rule resulting from the above classifier has the following form (in square 
brackets the numbers of fuzzy sets are shown): 

if (Heading is Left [Ol and Distance is Far [O] and 
Distance is Near [1] and Distance .is Far [Oj) 

then (LinV el is Slow [O] and Rot Vel is Right [2]) 

In a population, there can be several classifiers, with the antecedent matching the 
current stimuli. Since ordy one classifier can send it's message to the environment, 
all classifiers activated as the result of the given stimuli take part in an auction, 
which results in a selection of the winner. The classifiers issue bids B, proportional 
to their strength S. The bid value of i-th classifier is computed as: 

+ N(0, °- ) 7 

where fbid is the investment factor, N(0, cr) is the Gaussian noise. The noise is 
needed, because several classifiers with the same S value can coexist in a population. 
The classifier with the highest bid becomes the winner and activates the actuator, 
by triggering the corresponding fuzzy rule in the controller. Then, the winning 
classifier pays the declared B value to the remaining active classifiers. During 
each cycle of the system activity all classifiers pay also a life tax which decrease 
their strength. This scheme facilitates elimination of non-productive classifiers, and 
enables existence of the subsets of similar classifiers. The utility of a classifier for 
the robot depends on how the rule generated from this classifier performs during 
the control step. Getting towards the goal yields a reward, while a behaviour which 
results in collisions receives no reward. The evaluator module assigns strength value 
to the classifier according to the reward received from the environment. 
The role of the genetic algorithm is the creation of new classifiers (and thus new 
rules). The new classifiers are created in a process based on three elementary ge-
netic operators: reproduction, crossover and mutation [5]. The probability of being 
selected as a "parent" is proportional to the strength of the classifier. The fittest 
classifiers from the new generation replace less fit individuals in the population. 
The genetic algorithm is triggered every ng en steps of the classifier system activity 
— this parameter can be adjusted in the simulator. Moreover, the genetic algorithm 
is called whenever the robot collides with an obstacle, or when it is moving for some 
period of time, without a progress towards the goal (this is very likely a trap or 
a loop). In such a case, the genetic algorithm is invoked with a higher mutation 
probability, to push the robot out of an equilibrium. 

4. LEARNING IN SIMULATION 

The motivation to use a simulator for learning robot behaviours stems primarily 
from the fact, that the try-and-error learning on a real robot may be dangerous,
Also, the number of simulated runs performed in the given amount of time can be 
much higher than the number of real experiments. 
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The simulation and learning system consists of two kinds of programs running in 
Win32 environment and co-operating through the TCP/IP network. The first pro-

gram is the environment s' erver. This program implements the simulation of the 
world, the robot vehicles, and sensors. The simulated environment is described 

by means of 2D vector primitives (polygons and lines). The server simulates such 
sensors as laser scanner, sonars, IR proximity, and tactile sensors (bumpers). The 
odometry of the robots is not simulated — the environment server provides the 
robot-clients with Current position and orientation Xrob =-- (x, y, O), with random 
uncertainty C(z,y,g) . This is a simplified equivalent of GPS or a global vision sys-
tem. The second program is the robot client. This program contains the navigation 
algorithm — in this case the fuzzy logic controller and the learning module. It is 
possible to configure individually the sensor suite on each robot (e.g the robot 
can have only sonars and IR sensors, scanner and IR, etc.). Also the parameters 
of the sensors can be configured individually. In each step of the simulation, the 
robot-clients receive data simulating their current sensor readings from the server, 
and they send to the server the current values of the linear and angular velocities; 
then used by the server to compute the next move of the simulated robot. The 
distributed simulator enables experiments with multi-agent scenarios, that involve 
several robots operating in the environment. There is no multi-robot learning pos-
sible (as so far), the robots learn individually, but the learned rule bases can be 
stored in files and then used in testing multi-robot simulations. 
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Figure 2: Example environments used for learning of fuzzy rules 

The learning procedure is supervised by an operator. At start, he chooses one of 
the three rule bases of the controller (BL, BR or BG). This base is active while 
learning, and filled with rules produced by the classifier system. In the learning 
mode the behaviour selector is not active. Because of that, it is important to use 
training environments, which are adequate for the behaviour to be learned (Fig. 
2). To start the learning, all possible preconditions of the fuzzy rules are generated, 
ss well as an initial population of classifiers. The learning can be stopped by the 
operator to test the rule bases in the full simulation mode. Then the user can 
switch back to the learning mode or modify the fuzzy rules manually. It is also 
Possible to start the learning from a set of manually generated rules as the initial 
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Figure 3: Results of using learned (A) and manually configured rules (B) 

population. 
The results of simulations show, that the performance of the robot's fuzzy controller 
with the rules generated by the classifier system is quite similar to the performance 
of the robot with manually defined rules (Fig. 3). In the case of environments with 
many obstacles, the path of the robot with learned rules is usually longer than the 
path of the manually configured robot. Also the time needed to complete the task 
is longer when the learned rules are used. This is because the evaluator module 
rewards the rules which keep the robot far from obstacles, and there is no reward 
directly proportional to the speed of the robot. Thus, in the learned rule bases 
more "cautious" rules are preferred. 
Figure 4 shows screenshots from the environment server program during a multi-
robot simulation with four robots trying to pass a crossing simultaneously. The 
robots detect each other with their range sensors, and treat as dynamic obstacles. 
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Figure 4: A multi-robot simulation — robots use learned fuzzy rules 

5. REAL ROBOT IMPLEMENTATION AND RESULTS 

To show the feasibility of the learned rules for real-world robot navigation, the 
fuzzy logic controller described in this article has been implemented on two mobile 
robots, Labrnate and Pioneer 2DX (Fig. 5). The controller can use fuzzy rule bases 
learned in the simulator. Both robots are of differential drive type, but they have 
different sensing capabilities. The Labrnate has a belt of 24 ultrasonic sensors and 
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short-range IR proximity sensors. The Pioneer 2DX is equipped with 8 forward-
looking sonars. The aim of the experiments was to: 

• confirm the ability of the GA-based learning to generate rules useful for real 
robots, 

• test how the performance of the fuzzy controller depends on the quality of 
the sensory data, 

• ćompare the learned rule bases to rule bases created by a human expert, in 
a number of different environments. 

Figure 6 is a sequence of images from the over-
head camera mounted to the ceiling of the labo-
ratory room, showing an obstacle avoidance ex-
periment performed with the Labmate robot. The 
robot used fuzzy rules learned in simulation. It 
has been provided with position and orientation 
Xrob = (x, j, O), C (x ,v ,g) by the overhead camera, 
acting as an external localization system [2]. In 
this experiment, the robot manoeuvred smoothly 
in narrow spaces between static obstacles, how-
ever it had to stop in several points to contact 
the vision system and obtain current position and 
orientation. 

Figure 5: Mobile robots used 
in the experiments 

Figure 6: Overhead camera images from an obstacle avoidance experiment with 
the Labm ate robot 

In Fig.7 an experiment with the Pioneer 2DX is shown. The robot avoided obstacles 
travelling to the goal point marked with the white "X" on the floor. The goal 
Point has been described by it's x and y position in the global frame. The Pioneer 
is small, agile, and reliable, thus most of the experiments have been performed 
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with this robot. A disadvantage is the inability to use the overhead camera-based 
localization system. In experiments with the Pioneer robot the overhead camera 
was used only to obtain images of the scene for the documentation purposes. 

Figure 7: Overhead camera images from an experiment with the Pioneer robot 

Figures 8 and 9 show two series of images obtained during one of the experiments 
aimed at the comparison of the learned and hand-crafted rules in a real environ-
ment. In these experiments the path obtained with the expert's rules (Fig. 8) was 
longer than the path resulting from the learned rules. This result can be attributed 
to the better balance between the two objectives (getting to the goal and obstacle 
avoidance) in the learned rules. The expert's rules were More "greedy" in moving 
to the goal, thus the robot initially chose to go to the right, then moving through 
the narrow passage. The robot with learned rules took the path to the left, moving 
through more open space. 

Figure 8: Obstacle avoidance with the hand-crafted rules on the Pioneer robot 
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The performance of the learned and manually defined controllers has been tested 

in several different environments, from, simple (like in Fig. 7) to more difficult, 

with small obstacles and tighter passages between them. The experimental results 
confirmed the results of the simulations — the learned rules result in longer paths, 

but they provide better collision avoidance, and offer better balance between the 
conflicting objectives. What is interesting, the advantage of the learned rules is 

more visible in more challenging environments, where the robot receives much more 
spurious sonar readings. We attribute this fact to the learning in simulation, where 

the simulated sensor readings are more noisy than the real sensors. Experinients 

with the Pioneer robot have also shown the crucial role of reliable localization. 

In some of the experimental runs the robot, using only it's odometry, had serious 
problems to find the goal. These situations were caused by collisions with the 
"foots" of the white tubes used as obstacles, which are invisible to the sonars, but 

can cause slippage when the robot runs over one of them. 

Figure 9: Obstacle avoidance with the learned rules on the Pioneer robot 

6. CONCLUSIONS 

In this article, a method using GA for obtaining fuzzy control rules has been 
Proposed. The resulting controllers have been tested on two real mobile robots, 
Of different sizes and sensing capabilities. Unlike other fuzzy-genetic systems the 
controller proposed here uses Mamdani-type fuzzy rules, which are intuitive for a 
human expert. Because of that, the learned rules can be easily understand and 
modified (if necessary) by the user. In contrary to many other GA-based systems, 
the one presented here does not evolve different robots over time. It rather im-
proves the existing rule bases by applying GA learning to the population of rules 
treated as competing individuals. Results of experiments show, that the learning 
In a realistic simulation yields stimulus-response control rules which are applicable 
to real mobile robots. 
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