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DISCRETE-CONTINUOUS PROJECT SCHEDULING 
STATE OF THE ART 

Abstract. In this paper a survey of models and algorithms for the discrete-
continuous project scheduling problems is presented. The problem is 
formulated and a general solution methodology is described Heuristic 
approaches are characterised The problem of correcting the schedule in 
case of unexpected disturbances during its execution is discussed. 

1. INTRODUCTION 
A project is a unique undertaking to be accomplished that consists of individual activities 
each of which requires time and scarce resources for its completion. Moreover there are 
precedence constraints between activities describing the order in which activities must be 
performed. Project scheduling is defined as finding start times for all activities Such that 
the precedence and resource constraints are satisfied and a given objective Is optimised. 

Two types of resources are considered: renewable and non-renewable ones. A resource is 
renewable, if only its temporal usage, i.e. temporary availability at every moment, is 
limited. The same resource can be used later when released by activity using it at the 
moment. A resource is non-renewable, if only its total consumption is limited. If both, the 
temporal usage and total consumption are limited, the resource is called a doubly-
constrained one. 
Project scheduling problems occur in many practical situations like construction work, the 
development and introduction of new products, service systems, strategic long-term 
planning, software development and many others. 
First approaches to solving project scheduling problems were developed in 1950's. it was 
assumed that resources are not limited and processing times are known a priori. The 
solution method proposed is, the well known, Critical Path Method (CPM). Practical 
experience with the Polaris missile project showed, however, that often it is very difficult 
to determine the duration of activities a priori with satisfactory accuracy. Thus another 
approach called PERT (Program Evaluation and Review Technique) was developed 
taking into account the uncertainty of activity times. 
Further it was observed that in some situations additional supply of resources may reduce 
the activity duration. Obviously, added resources also cause increased cost of the project 
and in consequence a time-cost trade-off problem was considered. 
In the Resource Constrained Project Scheduling Problem (RCPSP), the limited 
availability of resources required by activities is taken into account and the optimisation 
criterion is the project duration. Unfortunately, it was proved that the RCPSP is strongly 
NP-hard, so there is unlikely that effective solution procedures can be developed. 
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Another generalisation of the project scheduling problem is to assume that the activity 
duration depends on the amount of the resource assigned to this job. So-called processing 
modes of activities are defined in the problem formulation and the objective is to find the 
shortest feasible schedule. This problem is called the Multi-Mode Resource-Constrained 
Project Scheduling Problem. The MRCPSP has been broadly studied in recent years. 
Several exact and heuristic approaches have been proposed. Talbot [17] was the first one 
who proposed an exact enumeration scheme, followed by Patterson et al. [14]. These 
early methods were able to solve instances up to 15 activities. Sprecher and Drexl [15] 
proposed new dominance criteria making their branch and bound algorithm be able to 
solve problems up to 20 activities. According to the results presented by Hartmann and 
Drexl [5] this algorithm is recently the most effective one for exact solving the MRCPSP. 
Sprecher and Drexl [15] also showed that even the currently most powerful optimisation 
procedures are unable to solve optimally highly resource-constrained problems with more 
than 20 activities and more than two modes per activity in reasonable computational time. 
In consequence, heuristic algorithms to find near-optimal solutions must be applied for 
larger projects. 
Several heuristic approaches for solving the MRCPSP have been already proposed in the 
literature. Talbot [17] and Sprecher and Drexl [15] suggest to use their branch and bound 
algorithms as heuristic procedures by imposing a time limit. Hartmann [4] proposed a 
genetic algorithm with encoding based on a precedence feasible list of activities and a 
mode assignment. Bouleimen and Lecocq [1] describe a new simulated annealing 
algorithm. Maniezzo and Mingozzi [13] propose a new mathematical formulation for the 
MRCPSP and use it to derive two new lower bounds and a new heuristic algorithm based 
on Benders' decomposition. 
Another criterion considered in the field of project scheduling problems is maximisation 
of the net present value of the cash flow in the project. This criterion was introduced by 
Russel in 1970 and examined by many other researchers. A recent survey of results for 
this model can be found in [10]. 
A comprehensive survey of project scheduling models and solution methods was recently 
developed by Demeulemeester and Herroelen [3]. 
All the problems mentioned up to this point assumed that the resources can be assigned to 
activities only in amounts from a given set (discrete numbers). In [7] another model was 
proposed where at least one resource can be allotted to activities in arbitrary amounts 
from a given interval (real numbers). Moreover, the activity duration is a decreasing 
function of the amount of the continuous resource allotted to the job at a time. This model 
of activity was proposed by Burkov [2] and further examined by Węglarz [18] for the 
preemptive schedules. Review of more recent results is the subject of this paper. 
In Section 2 the formulation of discrete-continuous scheduling problems as well as 
general solution approach are presented. In Section 3 some heuristics for the minimisation 
of the project duration are described. Section 4 discusses the problem of updating the 
schedule in case of disturbances observed during its execution. Summary and directions 
for further research complete the paper. 
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2. PROBLEM FORMULATION 
The problem of discrete-continuous project scheduling is defined as follows [7]. Let us 
consider a project consisting of n precedence- and resource-constrained, nonpreemptable 
activities that require renewable resources of two types: discrete and continuous ones. 
Assume m discrete resources are available and vector ri = [rib rim], i = n, 
determines the (fixed) discrete resource requirements of activity i. The total number of 
units of the discrete resource], j = 1,..., m, is limited by Rj. The single continuous, 
renewable resource can be allotted to activities in (arbitrary) amounts from the interval 
[0, 1]. The amount (unknown in advance) of the continuous resource ui(t), allotted to 
activity i at time t determines the processing rate of activity i as it is described by the 
following equation: 

x.(0)=0, xi (C1)= 
dt " 

(1) 

where xi (t) is the state of activity i at time t, 

f i  is a continuous, nondecreasing function, where f i (0) = O , 

u; (t) is the amount of the continuous resource allotted to activity i at time t, 

Ci is the completion time (unknown in advance) of activity i, 

is the processing demand (final state) of activity i. 

State xi(t) of activity i at time t is an objective measure of work related to the processing 
of activity i up to time t. It may denote, for example, the number of man-hours already 
spent on processing of activity i, the number of standard instructions in processing of 
computer program i, and so on. All activities are available at the start of the process. 
The problem is to find a feasible assignment of discrete resources and, simultaneously, 
a continuous resource allocation which minimise the schedule length, i.e. the project 
duration, M= max{ Ci, i =1,2,...,12}. The continuous resource allocation is defined by a 

piece-wise continuous, non-negative vector function u* (t)=[ir (t)u 2* , u ne(t)] whose 

values u = [4,24,...,41 are (continuous) resource allocations corresponding to M*
the minimal value of M 
The general methodology developed for the discrete-continuous project scheduling 
problems uses the idea of a feasible sequence defined first in [12]. Let us divide a feasible 
schedule (i.e. a solution of a discrete-continuous project scheduling problem) into p n 
intervals of lengths Mk, k = defined by the completion times of the consecutive 
activities. 
Let Zk denote the combination of activities corresponding to the k-th interval. Thus, a 
feasible sequence S of combinations 4 k-- 1,2,..., p, is associated with each feasible 
schedule. The feasibility of such a sequence requires that: 
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1. the number of units of the discrete resource j, j = 1,..., m, assigned to all activities in 
combination Zk, k= 1,- • -,13, does not exceed Rb i.e. E ry R „j.. 1,..., 1,• • •,m, k= 1,• • •, p, 

ieZk 

2. each activity appears in at least one combination, 

3. precedence constraints between activities are satisfied, 

4. nonpreemptability of each activity is guaranteed. 

The last condition requires that each activity appeared in exactly one or in consecutive 
combinations in S. 
It has been proved in [7] that for convex processing rate functions f i, i= 1, 2,..., n, a 
makespan optimal schedule is obtained by allotting the total amount of the continuous 
resource to one activity at a time only. Concluding, in an optimal schedule activities are 
ordered in a sequence fulfilling the precedence constraints and the total amount of the 
continuous resource is allotted to each activity. Of course, if we assume ry, Ri, i= 1, 
2,. .., n, j = 1, m, the discrete resource constraints are fulfilled, because only one 
activity is performed at a time. For concave processing rate functions in a makespan 
optimal schedule as many activities as possible are performed in parallel (see [7]). In this 
case for a given feasible sequence S one can find an optimal division of processing 
demands of activities, :K, i= 1,2.....n, among combinations in S, i.e.. a division which 
leads to a minimum length schedule from among all feasible schedules generated by S. To 
this end a nonlinear programming problem can be formulated in which the sum of the 
minimum-length intervals (i.e. parts of a feasible schedule) generated by consecutive 
combinations in S, as functions of the tiik ),Ec,k where Yik is a part of activity I 

n 

processed in combination Zk, is minimized subject to the constraints that each activity has 
to be completed. For concave processing rates j, i = n, it is sufficient to consider 
feasible schedules in which the resource allocations among activities remain constant in 
each interval k, k= 1, 2,..., p. In the sequel we will assume that , i = 1, 2,..., n, are 
concave. 

Let M;( ) be the minimum length of the part of the schedule generated by Zk E S, as a 
function of Xk = {iik}iezk . Let Ki be the set of all indices of Zk's such that i E Zk. The 

following mathematical programming problem is obtained to find an optimal demand 
division of activities for a given feasible sequence S. 

Problem P 

Minimize 

subject to 

\ P 

kIrc=1)= M; (k) 
k=1 

Dik 
keKi

0

i= 1,2.....n 

i = 1,2,..., n; k e Ki 

(2) 

(3) 

(4) 
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where M:(xk) is calculated as a unique positive root of the equation: 

fi--' (Yik /Mk )=1 (5) 
ieZk 

which can be solved analytically for some important cases (see [18]). 
Of course, constraints (3) correspond to the condition of fulfilling processing demands of 
all activities. It was proved by Węglarz in [18] that the objective function (2) is always a 
convex function. In consequence, our problem is to minimize a convex function subject to 
linear constraints. 
After finding an optimal division „k":  i = 1, 2,..., n, k E K, of 's the corresponding 

continuous resource allocation for combination Zk is given as 

= I+k i ikM -r) ieZk (6) 

Thus, an optimal continuous resource allocation for a given feasible sequence can be 
calculated by solving Problem P. In consequence, a globally optimal schedule can be 
found by solving the continuous resource allocation problem optimally for all feasible 
sequences and choosing a schedule with the minimum length. In this sense the process of 
finding an optimal schedule can be viewed as a search process over the space of all 
feasible sequences for a given problem instance. Unfortunately, in general, the number of 
all feasible sequences grows exponentially with the number of activities. 

3. HEURISTIC ALGORITHMS 
3.1. Metaheuristics 

We have stated above that a way to find an optimal schedule is to calculate optimal 
resource allocations for all the feasible sequences and choose the best one of all the 
schedules generated. Therefore it is possible to apply local search metaheuristics such as 
Simulated Annealing (SA), Tabu Search (TS) or Genetic Algorithms (GA) operating on a 
space of all feasible sequences [7]. 
However, since the number of combinations in a feasible sequence p is less than or equal 
to n, it is easy to observe that in order to find an optimal schedule, it is sufficient to look 
through n-element feasible sequences only. 
Thus we define a feasible solution as an n-element feasible sequence. The set of all such 
feasible solutions constitutes the search space for all the three heuristics. 
We may assume without loss of generality that activities are numbered in such a way that 
if I <j, then i precedes J. This can be always accomplished using the level numbering of 
nodes in a directed acyclic graph. For each feasible solution the objective function is 
calculated by solving Problem P for the corresponding feasible sequence. The stop 
criterion has been defined as a number of feasible solutions visited. 
The results presented in [7] show that SA has found the best solutions of all the three 
heuristics for all instances generated. The average relative deviation of the solutions 
found by both the remaining heuristics from the solution found by SA is less than 2%, 
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while the maximum deviation is over 10% for TS. GA has produced slightly better results 
than TS, especially the number of instances for which the best solution has been found is 
larger for GA. 
Finally, let us stress that the high computational effort required follows from the fact that 
for every feasible solution visited by a heuristic an optimal resource allocation has been 
calculated by solving Problem P. Solving the nonlinear mathematical programming 
problem was very time consuming. Thus, another approach to solving the discrete-
continuous scheduling problems was proposed in [8] 

3.2. Dicretisation of the continuous resource 

Observe that the mathematical programming problems for finding optimal resource 
allocation, although theoretically valuable, are in general computationally intractable, as 
we have already mentioned above. Thus in this section we describe an alternative 
approach, the continuous resource allotments are dicretised. Denote by 

/(i) r 
r. = u E 1.0,1i  the discretised continuous resource allotment for activity i, 1(0 = 1, 2, 

L, where L is the maximal number of allotments. Then from (1) we obtain the 
processing time of activity i for this allotment: 

1 

/(i) r j = 
(ri(i)) (7) 

Treating the discretised continuous resource as an additional discrete resource, i.e. 
resource m + 1, we obtain the MRCPSP in which resource requirements of activity i, 
i = 1, 2, ..., n, processed in mode I(i), I(i) = 1, 2, ..., L, are determined by vector 

r i.10 = , ri2 ., rim, +1 lEr! (i) 1 and processing times are defined by (7). Of m im+1 

course, resource m + 1 is renewable and its total available amount is equal to 1. 
The discretisation of the continuous resource converts our problem to the Multi-Mode 
Resource-Constrained Project Scheduling Problem. The latter one is solved using a 
customised simulated annealing algorithm. Two versions of the simulated annealing 
algorithm were proposed in [8] and computationally compared with the SA algorithm 
developed for the original discrete-continuous model. The results showed that the 
considered approach allows to reduce computational time up to 70 times while loosing 
not more than 5% of solution quality. 

4. UNCERTAINTY IN DISCRETE-CONTINUOUS SCHEDULING 
The methodology presented above assumes complete information about the scheduling 
problem and a static deterministic environment within which the schedule will be 
executed. This is a general characteristic of the deterministie approaches to scheduling. 
A schedule constructed basing on such assumptions is called a predictive one [11]. 
However, in practical applications the problem parameters are subject to uncertainty. 
Quite often it may be difficult to predict the processing demand and processing rate 
function of the activities. In such situations estimation from analysis of historical data is 
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used to build the predictive schedule. Herroelen and Lens [6] present an extensive survey 

of approaches to project scheduling under uncertainty.. They examine the following 
methods: reactive scheduling, stochastic project scheduling, stochastic GERT network 
scheduling, fuzzy project scheduling, robust (proactive) scheduling and sensitivity 
analysis. 

In this section we would like to exploit some properties of discrete-continuous scheduling 

in order to create good reactive schedules without changing the discrete part of the 
predictive schedule and thus saving a lot of computational time. 

By a disturbance in a schedule we will understand a situation where a deviation of the 
completion time of an activity is observed (delayed or early completion). There may be 
several reasons of disturbances. However, the availability of resources is the most 
common source if disturbances. It is easy to observe that variation in the available number 

of units of a discrete resource may not influence the schedule, while any decrease of the 
available amount of the continuous resource must result in increased processing time of at 
least one activity. Similarly, resource requirements of an activity may not influence the 
schedule in case of discrete resources. In case of continuous resources this demand is 
represented by the processing rate function. A change of the processing rate function 
usually results in different than expected completion time. On the other hand, however, if 
a critical discrete resource is not available, the delays may be significant. 

In [11] a scheduling algorithm was proposed where the continuous resource allocation is 
modified in response to the late or early completion of activities performed according to 
the predictive schedule. As it was already mentioned the given feasible sequence of 
activities remains unchanged. Otherwise the feasibility of the allocation of the discrete 
resources could be violated. The proposed method is dedicated to the case where 
functionsf i = 1, 2,..., n, are concave. Moreover, the method bases on the assumption that 
the present state of an activity is unknown during its execution. Although the proposed 
model of activity execution (1) allows changing the allocation of the continuous resource 
to an activity during its execution, we will assume that this allocation may be modified at 
the completion time of an activity only. 
The idea of the algorithm is based on the assumption that any disturbances (late or early 
completion of an activity) in the execution of the schedule result from an unforeseen 
change of the processing demand of an activity. The adequate reactive allocation of the 
continuous resource to the executed activities bases on periodically modified information 
on the processing demand of the portion of these activities that is not yet completed. To 
this end the actual processing demands of the executed activities are measured and 
compared with the processing demands assumed in the predictive schedule. 
The proposed heuristic generates results satisfactory from the practical point of view. The 
maximum relative deviation from the schedule with optimum resource allocation may 
exceed 30%, but simple realisation of the predictive schedule may result in much worse 
schedules (125% deviation from optimum). 

S. SUMMARY 
Discrete-continuous scheduling problems have been defined in the last decade. This paper 
presents the state of the art in this interesting area. Two general solution approaches are 
presented based on search techniques. One of the approaches assumes that the continuous 
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resource allocation is calculated exactly by solving a mathematical programming 
problem, while the other approach converts the problem to the multi-mode resource 
constrained scheduling problem via discretisation of the continuous resource. The first 
one is more time consuming, but provides slightly better solutions. Another issue 
discussed in this paper is adjusting the schedule in case of unexpected disturbances during 
its execution. This is also one of possible and important directions for further research. 
Another topic for further investigation may be consideration of other optimisation criteria, 
like for example maximisation of the net present value. 
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