Jr hab. inZ. Tadeusz Witkowski

The Faculty of Production Engineering,

Warsaw University of Technology, Poland

pawel Antczak . o

The Faculty of Production Engineering,

Jarsaw University of Technology, Poland

ugr int. Grzegorz Strojny o

The Faculty of Production Engineering,

warsaw University of Technology, Poland \

USE CONSTRAINT SATISFACTION ADAPTIVE
NEURAL NETWORK FOR JOB- SHOP SCHEDULING

The paper presents the application of the Constraints Adaptive Neural
Network to job-shop scheduling problem. The main idea of the CSANN
method has been described. Especially the capacity of the net for
adaptation to constraints of specific problem has been presented. The
computer experiment has been proceeded to find the Johnson criterion (the
minimal total time of the performance of all operations). The criterion has
mainly been found as a function of the number of iterations of the
computing process. Achieved results have been compared with the genetic
algorithm AGHAR worked out for the solving of such type of problems.

!

LINTRODUCTION

In general, scheduling problems have received a lot of interests from artificial neural
network (ANN) researchers. As a result a number of neural networks have been
developed to solve a wide range of scheduling problems. The existing studies can be
classified according to the following network structures (or types):

1. Hopfield model and other optimising networks
2. competitive networks
3. back propagation networks

‘The most of the existing studies are based on Hopfield network. Hopfield network is
asingle layered and fully interconnected neural network model. It is an optimiser in the
¥ense that the states of the neurons are updated in a random and asynchronous manner
10 minimize the energy of the network. In this case both the objective function (i.e., soft
tonstraints) and hard constraints (i.e., constraints of the original problem) are coded into
dsingle energy function with appropriate connection weights.
neufor exarfnple the Travelling Salesman Problem is mapped to a two dimensional

On matrix using N neurons, where N is a number of cities. Foo and Takefuji [6]
”:“’e utilized the Hopfield approach to map the nlm job shop scheduling problem to an
V" by (mn+1) 2D neuron matrix. In this formulation the energy function is composed of

o co_nstraints (i.e., precedence and resource constraints) and the cost of totai
Wpletion times of all Jobs.
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In competitive networks, the inhibitory links are established as a resy) of
competition rather than being determined initially as in the Hopfield case. In desigy;,,
such a network, one usually develops equations of motion for the elements of lh;
problem and defines an appropriate energy function to show the convergence of the
network. There are not many reported applications of competitive networks
Back propagation networks has been used more frequently than competitive netwaor,
They are used especially because of their generalization property. It allows to find g,
relationship between problem data and optimal schedules and to determine the prop
value of a look ahead parameter of a job priority rule, and to establish adequate Weights
an operational policy at the network centre level and the overall performance meagy,
of a manufacturing system. They have also been used together with OR and Al tools
an integrated manner for real time scheduling systems. o B

All these studies have shown that scheduling problems can be successfully attacked
by neural networks. At present, the neural network approach may not seem to be g
good as conventional algorithms in terms of the quality of solutions but their inherey
parallelism (parallel processing) offers some advantages. New models and methog
based on neural network still have been created. The comparison between them ang
conventional methods have shown that neural network approach seems to be very
perspective and its efficiency still grows.

The Constraints Satisfaction Adaptive Neural Network is such next method. It has
been proposed and presented in [27].

2. STATEMENT OF THE JOB SHOP SCHEDULING PROBLEM :

Consider a set of jobs Z= {Z;},i € I, where I = { I, 2, ..., n } is an admissible setof *
details (nodes), U = {u,}, g € 1, m, is a set of executors (machines, worksites). Each '
job Z; is a group of details IT; of equal partial task p; of a certain range of production

Operations of the technological processing of the i-th detail are denoted by {0y} 1;1;5

Then for Z; , we can write Z; = (I; { Oy} 1;1=,-§) where O;; = (G, tw) is the j-th operafion

of processing the i-th group of details; ¢&; is the number of operation of the technologica ‘
process at which one should start the processing the i-th group of details; H; i the

number of the last operation for a given group; G; is a group of interchangeable devics
that is assigned to the operation Oy; Oy, is a operation O; proceeded on the machi

ug. G is the i-th technological route being considered as a sequence of the groups of
{Z;}l; Tye(N) 189
elementary working time (duration in minutes) of the operation Oy, with one deFailé. .
that depends on the number of machine N in the group (on the specified 0pera(10"5)' .

T';, is the duration of tuning before the operation Oy;; M = maxH; is the numbef d |

devices; G is a set of all groups of devices arose in the matrix

. i .
"generalized” operations; N,, is the number of all groups of machines. It is required v
construct a quasioptimal plan-schedule H* that is given in the form of a matrix {Sir :
Py}, i € 1,n;j € 1, M (where S, and P;, are instants of the beginning and )
termination of the operation Oy; 4;€ Gj is the number of a specific machine assigned!
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he operation 0;) and in thq form 9f a vector of permutations (0}, Oz, ..., Gy), where g; =
{01 Bap o Oin)s eac_:h of Wl'.AlCh assigns the order of starting of groups on the generalized
operations. A certain function F(H) serves as a numerical test for estimating the plan H.
Aplan H* is called quasioptimal if F(H*) < F(H) for all or almost all H € ¥, where ¥
is the set of admissible real plans.

We use the Johnson criterion (minimal total time of performance of operations). The
desired plan H* (ordering of production operations) should satisfy certain constraints.

3, DESCRIPTION OF CONSTRAINTS ADAPTIVE NEURAL
NETWORK METHOD (CSANN)

3,1, Neural Units

To solve the problem mentioned above it can be mapped to Constraints Satisfaction
Adaptive Neural Network (CSANN).

The CSANN, as each neural network consists of many interconnected parallel
processing elements called neural units (simply — units). An i-th unit consists a linear
summator and nonlinear activation function which are serialized. The summator
receives signals Agj=1,...,n) from connected units and sums them weighted with
corresponding connection weights Wj; together with a bias B; The output of the
summator, denoted here as N; is passed through an activation function f. The output of
function fis an input of next unit or units. So a unit can be defined as follows:

N, =i(w.j><Aj)+ B,
j=1 4y

A=f (N i)
where W; is the connecting weight from unit j to unit ..

. The CSANN contains three kinds of unit, based on the general neural unit. The first
kind of unit are called ST — units, representing the starting times of all operations. Each -
ST-unit represents one operation of the job shop scheduling problem with its activation
corresponding to the starting time of the particular operation.
. lThil second kind of unit, SC —units represent whether the sequence constraints are
olated.

The third kind of unit, RC-units represent whether the resource constraints are violated. !

The input of ST-unit, e. g., ST; is calculated by

N (6) = Z (Wu X Agc, (t)) + Z (W:k X Agc, (t))"‘ A, (t~1) @)
a j k -
“’tere t.he net input of the unit ST, is the sum of three terms. The first term represents
foe dgelﬁhtefl activations of SC-units connecting with unit ST; which implements
Weighicd ad_l_ustqlents because .Of sequence vxo!atlons; Tl.m secqnd term represents the
i :1 activations of RC-units C(_)nnef:ted with the' unit S7; implementing feedl?ack
seiva ents })ccause (_)_f resource violations. The third term represents the previous
On, with the weight being +1, of the unit ST; itself.
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The activation function of ST-units is defined as follows: .

ur st“,.(t)<ri
AST,(t): Nsri t)’ ’?SNST,(F) Sdi‘_‘_TSTi G
d,— ST > Nsr,. >d,.—TST_

where r; and d; are the release date and the due date, respectively of job i to which the
operation corresponding to unit S7; belongs.»Tm is the processing time of the Operaigy
corresponding to unit S7;. . .

The SC-units receive the incoming weighted activations from the connected ST
units, representing operations of the same job. The RC- units receive the incoming
weight activations from the connected ST-units, representing operations sharing e
same machine. The net input of SC-unit or a RC-unit has the form as follows.

N¢ (’): Z(WU XASTj (t))Jch,- e @

J
where C; represents a SC-unit SC; or a RC-unit RC; and B; is the bias of SC; or RC,. Th
bias Bc; is added to the incoming weighted activations of the connected ST-units and

equals to the processing time of a relative operation.

The activation function of a SC-unit or a RC-unit is defined as follows:
0, N, (t)=0
Asr, () =1_

@)
No @), N, ()<0
Zero activation of a SC-unit or a RC — unit means that the corresponding sequence
constraints or resource constraint is satisfied and there are no feedback adjustment from
this SC-unit or RC-unit to connected ST-unit. B

3.2. Adaptive Connections Weights and Unit Biases )

In the proposed CSANN, the connection weights and biases of neural units at
adaptively valued according to the actual activations of ST-units whilst the networki
running, together with the sequence and resource constraints of the specific problem.

All units of CSANN, including ST-units, SC-units, RC-units are connected
according to the two kinds of sequence and resource constraint of a specific job-shef
scheduling problem, resulting in two blocks: SC-block, (sequence constraint biock) and
RC-block (resource constraint block). The SC-block consists of ST-units and SC-unit
The RC-block consists of ST-units and RC-units. Each unit of a SC-block contains ¥
ST-units, responding to two operations of a job, and one SC-unit, representing whethet
the sequence constraint between these two operations is violated (see Fig. 1). Each BC‘
block contains two ST-units, responding to two operations sharing the same machi®®
and one RC-unit representing whether the resource constraint between these V0
operations is violated (see Fig. 2).

Fig. 1 and Fig. 2-show how the adaptive weights are valuated. Fig. 1 illustrate ”"
example of a SC-block unit, denoted by SC,, and Fig. 2 illustrates an example ofaR )
block unit, denoted by RC,u;. In Fig.1 and 2, Igry,, is the initial value set for the ST-um
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r r‘,,sponding to the initial starting time Sy,(O) of the operation Oy,. In Fig.1 the two
S 'kp’nits STap and STy, represents the two operations Oy, and Oy, of job i. Their
ST-'ua(ions Astirp and Agpy, represents the starting times Sy, and Sy, of O, and Oy,
acflV ctively. The SC-unit SC;y represents whether the sequence constraint between Oy,
re>53301 is violated, with Bscy being its bias. Then at time ¢ during the processing of
antwo;;’ the connection weights W;, W,, the feedback connection weights W;, W, and
:Lee bias Bsci of S Cy are adaptively valued as shown below: .

ten Sta—Sip 2T then Wy= -1, Wo= 1, Wy = -W, W, =W, Bscur Ty ©)
when (Sig — Sitp 2Ty OT ‘?ikp — Sig 2Tig) and Sp(t) < Sy (f) then

Wi=-1, Wy = 1, Wy = -W, Wy =W, Bscu= Ty @)
when (Sizg = Sikp 2Tt OF Sy — Sitq 2Tag) and Sy (1) > Syg(t) then

Wi=1, Wy=-1, Wy =W, Wy = -W, Bscr=-Tiy, (8)

where W is a positive changeable parameter (e.g 0,5) used for feedback adjustment

Similarly in Fig. 2, RC,; represents the resource constraint between Oy, and Oy, on
machine g. At time ¢ during the processing of the network, the adaptive weights and bias
are valued as shown below:

when Oy, and Oy, have to occupied the same machine and Sy, (2) < Sj,(#) then

Ws=-1, Ws=1, Wy =-W, W =W, Brcyi= -Tiy ’ 9

when Oy, and Oy, have to occupied the same machine and Sikg(®) > Spg(f) then )
YW=, W =-1, Wy =W, Ws = -W, Breqgi= -Tig - (10)
To recapitulate, the architecture of the network used for CSANN method consists of
o layers. The bottom layer consists only of ST-units, corresponding to the starting
mes of all operations. The top layer contains both SC-units and RC-units, which
represents sequence and resource constraints, and provide feedback information to

adjust ST-units for sequence and resource constraints satisfaction through SC-block and
RC-block respectively.

Bsciu +

, 2 |
Wi
Asriey W; Wy Astig
V\ w
+1 +1

Isritg

Fig. 1. SC-block unit representing sequence constraints (ref. [271)
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Fig. 2. RC-block unit representing resource constraints (ref. [27]).

4. RESULTS OF THE COMPUTER’S EXPERIMENT

The described method CSANN has been applied to the solving of the probley

defined in Chapter 2. The computer’s experiment has been proceeded and the structure
of data described in [20] and [23] has been used. The Table 1 presents achieved result.

Results of the experiment.

The experiment has been proceeded for serial production case. Results of th '

experiment has been mainly compared with the genetic algorithm AGHAR [26]. Th
minimal Time for AGHAR has been 56293. The minimal time presented in Tab. 11

50242,02. So this result is 11% better than one achieved thanks to AGHAR.

Tab. 1

prien | Nomberel| 5 | goen |
iterations | criterion) !

10/16/serial/C rr;in. 160 5000 50242,2
10/16/ serial /C min. 160 1000 50688,8 '
10/16/ serial /C min. 160 500 51105,1 .
10/16/ serial /C min. 160 100 52094 I
10/16/ serial /C min. 160 50 522304 '
10/16/ serial /C min. 160 10 53714,9 :
10/16/ serial /C min. 160 5 54275,6 !
10/16/ serial /C min. 160 1 58461,1 .
]
|
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