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I! 

Abstract. The problem of infinite eigenvalue assignment by output-feedbacks is 
considered Necessary and sufficient conditions for the existence of a solution 
to the problem are established. A procedure for computation of the output-
feedback gain matrix is given and illustrated by a numerical example. 

1. INTRODUCTION , 
It is well-known [1,8,10,6,9] that if a pair (A,B) of standard linear 
system _ż = Ax+Bu is controllable then there exist a state-feedback gain matrix K such 
that det[/,,s — A + BK]= p(s), where p(s)= s" + +...+ ais ±; is a given 

arbitrary n degree polynomial. By changing K we may modify arbitrarily only the 
coefficients but we are not able to change the degree n of the polynomial 

which is determined by the matrix Is. In singular linear systems we are also able to 

change the degree of the closed-loop characteristic polynomials by suitable choice of 
the state-feedback matrix K. The problem of finding of a state-feedback matrix K such 
that det[Es — A + BK]= a O (a is independent of s) has been considered in 
[7,2]. The infinite eigenvalue assignment problem by feedbacks is very important 
problem in design of the perfect observers [4,5,7]. 
In this paper the problem of infinite eigenvalue assignment by output-feedbacks is 
formulated and solved. 
This is an extension of the method given in [7] for output feedback case. Necessary and 
sufficient conditions for the existence of a solution to the problem will be established 
and a procedure for computation of the output-feedback gain matrix will be presented. 

2. PROBLEM FORMULATION 
Let be the set of n x m real matrices and R" =R'. 

Consider the continuous-time linear system 

Ex=Ax+Bu,y=Cx (1) 
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dx 
where — XE R" , u E Rrn and y E RP are the semistate, input and output 

dt 

vectors and E, A E ,13 e ,C E . The system (1) is called singular if 

det E = O and it is called standard when det E # O. 

It is assumed that rank E = r < n, rank B = m, rank C = p and the pair (E, A) is 

regular, i.e. 

det[Es — A] # O for some s e C (the field of complex numbers) (2) 

Let us consider the system (1) with the output-feedback 

u = v — Fy (3) 

where v e R" is a new input and F E e xP is a gain matrix. 

From (1) and (3) we have 

Eic = (A — BFC)x + By (4) 

Problem 1. Given matrices E, A, B, C of (1) and nonzero scalar a (independent of 

s). Find a F E Rnixi) such that 

det[Es — A + BFC]= a (5) 

In this paper necessary and sufficient conditions for the existence of a solution to the 

problem will be established and a procedure for computation of F will be proposed. 

3. PROBLEM SOLUTION 

From the equality 

Es — A+ RFC — A., B} 7 
Fc 

Es — A 
.--[1 BFt 

C (6) 
and (5) it follows that the problem has a solution only if 

rank [Es — A,B]= n for all finite SE C (7) 

and 

rank 
Es — A 

[ c n for all finite s e C 
(8) 

The problem will be solved by the use of the following two steps procedure 
Step 1. (Subproblem 1). Given E,A,B of (1) and a scalar a . Find a matrix 
such that 

det [Es — A+ BK]= a 

K = FC 

(9) 

Step 2. (subproblem 2). Given C and K depending of some free parameters 

,k2 ,...,k i (found in Step 1). Find desired F satisfying the equation 

K = FC (10) 

The solution of the subproblem 1 is based on the following lemma [2, 7]. 
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Lemma 1. If the condition (2) is satisfied then there exist orthogo. nal matrices U, V 
such that 

11 

U {Es - =-
Eis - 

0 Es -Ą 
,UB 

B, 

O E0 , A0 E 

El, A1 e R " 
„B1 E R"'" (11a) 

where the subsystem (E,, 4, B) is completely controllable, the pair A0 ) i 

regular, E, is upper triangular and * denotes an unimportant matrix. 

Moreover the matrices E„ A, and B, are of the forms 

Es -4 = 

Es -A,, 

A,, 

O 

- A, 

E„s - A,, 

• 

• • 
E 1,k-IS  41-1 

- 

- 

gks -4, 
E„s - 

E„s - 

O O O - E„s - 
(11b) 

B, = 

B„ 

O 
• 

• 

• 

, E R"°", i, j = 1,..., k 

B„ E R"'" = n 
' 

O 

with B „ A„, of full row rank and E„,...,E„ nonsingular. 

Remark 1. The matrix C = CV has no special form. 

Theorem 1. Let the condition (2) and (7) be satisfied and let the matrices E. A, B of (1) 
be transformed to the forms (11). There exists a matrix K satisfying the condition (9) il 
and only if 
i) the subsystem (E, , A, B,) is singular, i.e. 

detE =0 ..(12a) 

ii) if no > 0 then the degree of the polynomial det[Eos - A0 J is zero, i.e. 

deg det[Eos - Ao ] = O for no >0 (12b) 

Proof. Necessity. From (9) and (11a) we have 
det[Es - A + B K] = det U-1 det V-1 det[Eis - A1 + BiK]det[Eos - Ao] = a (13) 

where K = KV E R'" and det[Eos - Aj_-l. if n. = . 

From (13) it follows that the condition (9) holds only if the conditions (12) are satisfied. 
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Sufficiency . First let us consider the single-input (m =1) case. In this case we have 

E, = 

a,, a,, - • a, 

a„ ••• 

O • ' 
O O - • a21 ,,1

a,,,i b„ 

a

, B, = bi = 
O 

O 

(14) 

where e. 0, O for i= 2,..., n, and b„# O 

The condition (12a) implies that e11 = 0. Premultiplying the matrix [E,s- A„bi] by 

orthogonal row operations matrix P, it is possible to make zero the entries 

of E, since e, # 0 i= 2,...,n. By this reduction only the entries of the 

first row of A3 will be modified. 

O 0 • • • O - 

= P,E, = O e22 
O 0 • • • 

Let 

— 

=PA = 
a. a 

O a,, • • • 

O 

a, ,, , 

a 

a2„,

a 3n,, 

- 1 ri 
k, = „-d,„...„-d 1- a 

Using (13), (15) and (16) we obtain 

det[E, s - A, + 1= 

O o 
- ail e22 S — a 22 

O —a3 

O 

e s -a 2,n1-1 

e3,11,-1S — a3,ni-1 

1 

e2n S — a2n 

e311,. S — a3ni. 

O o - ani s -a nn

(16) 

(17) 

= a21a31 - • • a ,,2,_1 = 

where -67 adet U det V det P, det[Eos -

The considerations can be easily extended for multi-input systems, m> 1. In this case 
the matrix p of the orthogonal row operations is chosen so that all entries of the first 

row of g .p,E, are zero. By this reduction only the entries of 4,,i =1,..., k and B„ 

will be modified. The modified matrices will be denoted by ;1,- , , i = k and B. 
Let • 

Y= {r4-. I 12," ••, lk 
(18) 
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111 I 

i i 

I 

i h 

I I 

The matrix GE k nx' in (18) is chosen so that 

0 0 • • • 0 (-1)41 h 

(* denotes unimportant entries) (19) 

h = a(-1)1.1  and c = de(/' detV 1 det I det[Eos — A0]. 

Using (13), (18) and (19) it is easy to verify that 

det[Es — A + = c detrgs — 71, + = a . (20) 

Remark 2. Note that for m >1 some entries of the matrix G in (18) can be chosen 

arbitrarily. Therefore, the matrix K = KV-1 has a number of free parameters denoted 

by kl ,k2 ,...,k(

The free parameters will be chosen so that the equation (10) has a solution F for given 
C and K. 
It is well-known that the equation (10) has a solution if and only if 

rank C = rank 

or equivalently 

C 

K 

Im KT c Im CT (T denotes the transpose) 

where Im denotes the image 

The free parameters ki , k1 are chosen so that (21) holds. 

Therefore, the following theorem has been proved. 

(21a) 

(21b) 

Theorem 2. Let the conditions (2), (7), (8) and (12) be satisfied, 
The problem has a solution, i.e. there exists F satisfying (5) if and only if the freę 

parameters k, ,k2 ,„., k i of K can be chosen so that the equation (10) has a solution F 

for given C and K. 
From the condition (21) and (16) we have the following corollary. 

Corollary 1. For m = 1 problem has a solution if and only if the row 

F i ll , 7( 12 ,—, (7lni-1(71ni 
—11 Is proportional to the matrix C. 

Remark 3. If the order of system is not high say n 5 the elementary row and column 
operations instead of the orthogonal operations can be used. 
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4. EXAMPLE 

For the singular system (1) with 

O 2 1 0 

0 1 —1 2 
E= 

O 0 1 —1 

O O O 1 

1 —1 0 1 0 

, A = 
0 

0 

1 

—1 

2 

1 

0 

—1 
„B = 

0 1 

0 0 
C = 

0.5 

2.5 

1 

3 

3 

4 

—2 

—1 
(22) 

0 0 2 1 _O O 

find the gain matrix F E R2x2 such that the condition (5) is satisfied for a =1 . 

In this case the pair (E,A) is regular since 

det[Es — A] = 

—1 2s+1 s —1 

O s-1 —s-2 2s 

0 1 s-1 1—s 

O 0 —2 s-1 

= (3 — s)(s —1)2 — (s + 2)(s —1) + 4s 

The matrices (22) have already the desired forms (11) with Ao = 0,B0 = 0, 

E, = E, A = A, B = B , n = n = 4, iti, = 2, = = 1, m = 2 and 

EH [O r 
o 1 L-1 

A = 
[1 —11 

11 
, Ai2 = 

O 1 _1 2 

O 

2 

, A 13 = -1], A 22 = [1], 

E;, = „E2 , = [1], E 2, =[-1], E 3, = [1] 

[ol 01  i 

A23 = [ - 1] 14 3 2 - —[2],A33 = [1 ], Bi — 

Using the elementary row operations [6,7] we obtain 

1 —2 —3 1 

• 
= 

0 1 1 —1 

0 0 1 0 

0 0 0 1 

and rfis PdEs — A, Bi= 

—1 

O 0 

5 —5 1 —2 

—1 2 0 1 
s-1 1—s O o 
—2 s-1 O o 
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1111, 

'1 

i ll 

I; Taking into account that in this case 

k i, Al2) A 13] =
0 0 1 — 2 O 1 

1 0 —5 [1 —2 
/31 = 

and using (18) we obtain 

G = 
[ O O O O 

0.5 k1 k2 k3 _ 

K = = B 1-1 {R Aid+ =[ 
2 2k1 2k2 —3 1+ 2k3

0.5 k1 k2 ±1 k3 -2 

where kl , k2 , k3 are free parameters. 

The free parameters are chosen so that the condition 

rank 

is satisfied. 

0.5 1 3 —2 

2.5 3 4 —1 
= rank 

0.5 1 3 i —2 

2.5 3 4 —1 

2 2k1 2k2 — 3 1±2k3

0.5 k, k2 ±1 k3 — 2 

The condition (23) is satisfied for k1 =1, k2 = 2, k3 = O and the equation 

• 

F[0.5 1 3 —2. 2 2 1 1 

2.5 3 4 —1 0.5 1 3 — 

has the solution 

F =[
-1 1 

1 O 

It is easy to check that 

det[Es — A + BK]= det det[Es — A + -fiK]= 

5. CONCLUDING REMARKS 

0 0 0 1 

0.5 s±1 2 0 

O 1 s-1 1— s 

0 0 —2 s —1 

=1 

(23) 

The problem of infinite eigenvalue assignment by output feedbacks has been formulated 
and solved. Necessary and sufficient conditions for the existence of a solution to the 
problem have been established. Two steps procedure for computation of the output-
feedback gain matrix has been derived and illustrated by a numerical example. With 
slight modifications the considerations can be extended for singular discrete-time lineal' 
systems. An extension of the considerations for two-dimensional linear systems [6] is 
also possible but it is not trivial. 
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