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CP APPROACH TO DESIGN OF REPETITIVE
MANUFACTURING PROCESSES

A class of repetitive concurrent manufacturing processes using common
resources in mutual exclusion is considered. A system with any resource
requests structure can be seen as a composition of subsystems with n cy-
clic processes sharing one resource. A problem of finding a schedule
such that no process waits for access to the resources has been formu-
lated as a task of constraint programming. State space of the problem’s
solutions has been reduced by use of necessary and sufficient conditions
for existence of a waiting-free n-process realisation. An example illustrat-
ing a method of problem solving using interval constraint logic pro-
gramming has been presented.

ZASTOSOWANIE METODY PROGRAMOWANIA Z OGRANICZENIAMI DO
PROJEKTOWANIA POWTARZALNYCH PROCESOW PRODUKCYJNYCH

Rozpatrywana jest klasa powtarzalnych, wspétbieznych proceséw pro-
dukcyjnych wykorzystujacych wspdlne zasoby w trybie wzajemnego wy-
kluczania. System o dowolnej strukturze zqdan zasobowych proceséw
moze by¢ rozpatrywany jako polaczenie podsystemow zlozonych z n pro-
ceséw cyklicznych wspoidzielacych jeden zasob. Problem wyznaczania
harmonogramu, ktéry gwarantuje nie wystgpowanie oczekiwania proce-
s6w na dostep do zasobow sformulowano jako zadanie programowania z
ograniczeniami. Przestrzeh rozwiqzan problemu zmniejszono dzieki wy-
korzystaniu warunkéw koniecznych i wystarczajqcych dla istnienia reali-
zacji n-procesu, w kirej zaden proces nie czeka na dostep do zasobow.
Przedstawiono przyklad ilustrujqcy metode rozwiqzywania problemu w
oparciu o programowanie logiczne z ograniczeniami zadanymi w postaci
przedziatow.

1. INTRODUCTION

Planning production flow in discrete production systems with concurrently executed
processes using common resources in mutual exclusion requires solving a problem of
resource conflicts resolution [3], [6], [9]. A solution of this problem is the best schedule
taking into account certain evaluation criterion, defining an order of using the re-
sources, e.g. machines, stores, tools, by the processes and guaranteeing deadlock-free
and starvation-free execution of the processes.
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Processing a batch of work-pieces according to a given production route, defining a
sequence of operations provided for the final product, creates a set of repetitive produc-
tion processes. Each operation in the route is using one production resource for a cer-
tain amount of time. Assuming that the following work-piece is introduced to the sys-
tem after finishing the previous one the cyclic process is created with a cycle time equal
to the sum of the operation times specified in the executed production route. In case
when several products is processed at the same time the production system can be seen
as a system of concurrent cyclic processes sharing resources in mutual exclusion [2],
[3].

In this work systems of cyclic processes with no deadlock possibility are considered [3],
[9]. This type of systems in many cases can be analysed as composed of subsystems
consisting of several processes sharing one resource. The problem to be solved in this
work consists in finding a schedule with no process waiting for access to the resources
and therefore does not require resource conflict resolution. In particular for a given
system of n cyclic processes sharing a resource and fixed operation times the starting
times of the processes such that a waiting-free schedule exists are looked for [11]. As-
suming that the operation times can be chosen from the bounded set of discrete values
solving the problem is equivalent to design of a production system with the following
properties:

® The processes will never wait for access to the resources;

* The initial state of the system, defined by starting times of production tasks, belongs
to the system’s cyclic steady-state;

» The system’s cycle time is equal to the least common multiple of cycle times of the
processes.

In order to find a waiting-free schedule for the n-process system a model based on
modulus equations presented in [10], [11] will be used. The model allows define a set
of constraints on starting times of the processes, which guarantee existence of a wait-
ing-free schedule. These constraints can be implemented by a program defined in a
constraint logic programming language Oz [4], [11] solving the problem using its pre-
defined searching procedures based on interval analysis and reduction of domain of
decision variables [7]. For the operations times given the constraint programming
method proposed allows finding the all possible solutions, i.e. a set of all starting times
of the processes leading to waiting-free execution of the system (if exist), or find the
specific solution, e.g. the first solution fulfilling a certain criterion (if exists).

2. SYSTEM OF PROCESSES

A system of repetitive manufacturing processes consists of a set of processes sharing
common resources in mutual exclusion; see Fig.1. Each process P;, (i=1,2,...,n), repre-
senting one product processing, executes periodically a sequence of the operations
using resources defined by Z;= (R;;, R, ..., Ry, where (i) denotes a length of produc-
tion route. The operations times are given by a sequence ZT; = (ry, ra, ..., Fiy), where
Fil, Y12 -y Fuy€N are defined in the uniform time units (N — set of natural numbers). For
instance the system shown in Fig.1 consists of ten resources and seven processes. The
resources Ry, Ry, R3, R, are shared ones, since each one is used by at least two proc-
esses, and the resources Rs, Rs, Ry, Rg, Ry, Ry are non-shared because each one is exclu-
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sively used by only one process. The processes Py, P, P3, P4, Ps, Ps, P; are executing
operations using resources given by the sequences: Z; = (Ry, Ry, R3, Rs), Z,= (R, Rs), Z3
= (R], R(,) Z4 (Rl, R7) ZS = (R2, Rg) Zs (R3, Rg) and Z7 = (R4, RIO) The system con-
sidered can be seen as composed of four subsystems each one with » cyclic processes
sharing a single resource. The n-process subsystems are defined as follows: subsystem
S1 = (Py, Py, Py, P;) — the processes are using resource Ry; subsystem S, = (Py, Ps) — the
processes are using resource R,; subsystem S; = (P, Pg) — the processes are using re-
source R;; subsystem S, = (Py, P;) - the processes are using resource R,. Because the n-
process subsystems have no common resources it is possible to analyse their behaviour
separately to find the initial resource allocation times of the processes for which wait-
ing-free schedules exist. The schedules designed for each subsystem can be joined to-
gether to obtain a waiting-free schedule for the whole system.

Fig.1. System of repetitive manufacturing processes with concurrency: P, P, P P,
Ps, Ps, P;—processes; Ry, Ry, Rs, Ry, Rs, Rg, Ry, Rs, Ro, Ryp— resources.

The n-process system (P;...,P;,...,Pj,..., P,) consists of n cyclic processes sharing a sin-
gle resource, e.g. subsystem of processes (P, Py, P3, P4) sharing resource R, shown in
Fig.1. Each process P; (i=1,2,...,n) executes periodically a sequence of the operations
using resources defined by Z;= (R, O;), where R denotes a shared resource used by the
processes and O; denotes a non-shared resource used by process P, The operations
times are given by a sequence Z7T; = (r;, 0;), where r;, 0; €N. A cycle time of P; is de-
fined by relation c; = r; + o;. For instance in the subsystem (P, P,, P3, P,) (Fig.1) the
shared resource R=R;, the resources R,, Rs, R4 are represented by the non-shared re-
source O, the resources O,=Rs, O3=R¢, O=R;.

The first operation executed by each processes (the sequence Z; always begins with
shared resource R) can be initiated at different times in relation to time #,=0. In the
following it will be assumed that one of the processes, e.g. the process with the greatest
cycle time, always starts at time 7,=0 and the other processes start at times 7 2 #,. It was
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shown [10], {117 that behaviour of the n-process system depends on the operation times
and starting times (phases) of the component processes. The system’s dynamics can be
analysed taking into account dynamics of each 2-process subsystem [1]. In the follow-
ing some results used to solve the problem of waiting-free schedule design will be re-
called.

3. MODELLING DYNAMICS

A natural model for behaviour analysis of discrete processes with periodicity is
modulus algebra [5], [8]. Using its properties it is possible to design recurrent module
equations defining times of any process resource request in relation to a chosen process
request and to find conditions guaranteeing waiting-free execution of the n-process
system.

3.1. Basic properties of modulus algebra

It is known that for any integer ac Z and any peN (p>0) the following relation holds:

a=wp-+r ’ (D

A number weZ is a quotient and number reZ & 0< r< p is a remainder [8]. The repre-
sentation (1) is unique since for a given p it is w = a div pandr=a-wp=amodp.
Two integers a,beZ are considered modulus peN equal if @ = b + kp and keZ This
special equality is called “congruence”. It would be said that a and b are congruent
(module equal) with respect to p. Congruence is defined with respect to a given p, and
any and all values of ke Z. A modular equality of @ and 5 is written as @ = b (mod p) or
a = b (mod p). Two integers a,beZ congruent with respect to p, divided by p, have the
same remainder 0<7< p. This follows from relations a = wp +r&a=bhb+kp, hence b
=wp —kp +r = (w—k)p + r. The last property can be written using mod operator: » = a
mod p = b mod p. It can also be noticed that:

VaeZ & VpeN if0<a<p, thenamodp = a 2)

For the n-process system the modulus algebra can be used to derive shifts between
times of resource requests of any process and the nearest resource allocation times of a
chosen process. The shifts will be used as local starting times of the processes.

3.2. Local starting times of the processes

Consider a system of processes (PI,...,P,»,...,P,-,..., P,) sharing a single resource (Fig.1).
Let x(k)eNU{0}, where k=0,1,2,3,..., denote times at which a process P;, where
ie{1,2,...,n}, requests access to the shared resource and a(k)eNU{0} times at which it
receives access to the resource. There is 0 < x{k) < afk) and it is assumed that a starting
time of a chosen process P; is equal to x{0) = 0 and a starting time of any process P,
where j#i is such that x,(0) > 0.

Assuming that the processes are executed independent each other (no resource sharing)
subsequent resource requesting times x{k) are equal to the allocation times ak) and can
be calculated according to the equation x,(k+1) = afk+1) = a(k) + c; (Fig.2). Therefore,
x{k) = a{k) = a(0) + k+c;. In case of concurrent execution of processes the relevant
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formula has to take into account a waiting time w(k). Hence, a(k+1) = x,(k+1) + wik) =
afk) + ¢;+ wk). A parameter t;{])e NU{0} (Fig.2), where /=0,1,2,..., defines distance
between a resource request time x;(/) of the process P; and the nearest resource alloca-
tion time af{k) < x{J) of the process P;. The shift #;(/) can be used as a local starting
time of P; in relation to resource allocation time of P;.

)

r; 0;

a(k) ro| o afk)te;

xj(l) x]{l)+cj

Fig.2. Resource request/allocation times.

Previous research showed that for any 2-process subsystem (£;, P;) of the n-process
system, where i#j & ije{1,2,...,n}, it is possible to derive values #(/), [=0,1,2,..., using
recurrent modulus equations [10], [11]. In case when each process execution is inde-
pendent to the others then resource request times are equal to resource allocation times,
i.e. x(/)=a(l). Therefore, times ;) can be calculated from the equation:

ti{l) = x{1) mod ¢; = a(/) mod ¢; = [a(0) + Ic;] mod c; & 3)
& t,-j(l)e[(),c,-) & a,-(0)=0 & aj(O)ZO :

It can be proven [10], [11] that for independent execution of the processes (no resource
sharing) resource request times of process P;, calculated in relation to resource alloca-
tion times of process P;, can occur only at local times #;({)[0,c;) (3) given by formula:

t(D) = a(l) mod c; = fi DDy + yi(D) & 1=0,1,2,... 4)

where  Dy;=D;=g.c.d.{c;,c})) & c=Dymy; & c;=D;mj; & g.c.d.(my,m;)=1 & my,m;eN &

& fi(D=1f{0) + Im;] mod my; & yi{D)=y(0) &

& 1,(0)=a(0) mod ¢; & f{0)=1(0)div D; & y{0)=t;{0) mod D; &

& 0< f;(0)<my; & 0< y{0)<D; & g.c.d. — the greatest common divisor.
Let W;={0,1,...,m;-1}. From fi()= [f(0) + Im;] mod m; (4) it follows that a range of
JiD) is such that f{lye W;. It can be shown [10] that f{/) achieves periodically, with
period my, all values from the set Wy, ie. {D=fi(I+k*my) for k=0,1,2,... and
1=0,1,2,...,m;~1. Therefore, function f;{/) defines permutation of the set .
By symmetry it is also possible to define local starting times #;(]) €[0,c;)) as times of
resource requests x;(/) of process P; in relation to the nearest resource allocation times
aj(k) < x(I) of process P;. The corresponding formula is given according to (4) by ex-
changing the indexes i, J.
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() = a(l) mod ¢; = filDDj; + yi(l) & 1=0,1,2,... )

It is possible to show [10] that the following reverse transformations hold:

JAD=lmy = fAD ~ (Dy=yD) div Dy] mod m; & y,(D=[Dy=y,(D] mod D, (6)

The presented formulas can be used to define conditions, which fulfilled, guarantee
waiting-free execution of the processes.

4. PROGRAMMING CONSTRAINTS FOR WAITING-FREE
EXECUTION OF PROCESSES

Dynamics of the n-process system depends on a dynamics of its 2-process subsystems
(P, P)), where i#j & ije{1,2,...,n}. It was shown [10] that behaviour of cach subsystem
(P;, P)) can be analysed taking into account the operation times and local starting times
t{De[0,c;) (4) of process P;, calculated in relation to resource allocation times of P, or
local starting times 5D €[0,c)) (5) of the process P;, calculated in relation to resource
allocation times of P;. In particular the following theorems define constraints for exis-
tence of waiting-free schedules of the 2-process system Py, P)). ‘

Theorem 1. A waiting-free schedule will be executed by the 2-process system (P;, P)) if

and only if exists starting time £,(0)e[0,c;), where t{0)= fi{0)D;; + y{0) (4), such that
ri<y 0)<Dy—r, (7

When the condition (7) holds then the 2-process system’s cycle time is equal to T; =
Le.m.(c;c;) = (¢*c))/Dy, where l.c.m.(c;,c;) denotes the least common multiple,

if the Theorem 1 holds, then also theorem taking into account #,(0) (5) holds. This is
because from (6) y()=[D;— y;(1)] mod Dj; and for /=0 from (7) Y{0)<D;~r<Dj there is
¥i{0)=D;— y;(0) (2). Hence, from (7) r; < Dj~y;{0) < D; - r;. Since, Dy=D, there is

vy < yj,(O) < Dj,' ~ 7Y (8)

Theorem 2. The conditions (7) and (8) are equivalent, i.e. r; < y#0) < Dy — 7, if and
only if 7; <y;(0) <Dj; —r:.

The n-process system consists of n(n-1)/2 different 2-process subsystems (P;, P)) de-
fined by i<j & i,je{1,2,...,n}. If for each (P, F;) constraint (7) holds, then the processes
will never wait for access to the resources. This configuration is stable since processes
do not disturb each other and therefore positions of any two processes will be not
changed. Taking into account Theorem 2 the necessary and sufficient condition for
existence of waiting-free schedule for the n-process system is given by the following
theorem [11].
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Theorem 3. A waiting-free schedule will be executed by the n-process system if and
only if for each subsystem (P;, P;), where i<j & i,je{},2,...,n}, exists a local starting
time £,;{0)<[0,c;), where £;(0)= f(0)D; + y(0) (4), or a local time #;(0)[0,c)), where
1i(0)= £40)Dj; + y;(0) (5), such that

(ri<yf0)<Dy—r;) v (r;<y(0) < Dj—r) 9)

When the condition (9) holds for each i<j & ije{l,2,...,n} then a cycle time of the
waiting-free n-process system is equal to ' = l.c.m.(cy,...,C5...Cj5.,Cn)-

Since the n-process waiting-free system has a cyclic steady-state with a period T it is
enough to consider starting resource allocation times a,0), i=1,2,...,n, such that

0<a{0)y<T (10)
)
According to Theorem 3 in order to find all starting positions a{0) (4) of the processes,
for which. waiting-free schedules exists, a constraint based finite domain combinatorial
problem defined by a set of constraints (4), (5), (9) and (10) over finite sets of nonnega-
tive integers has to be solved.

5. FINDING STARTING TIMES USING CP METHOD

Solution to the constraint based problem of finding starting times of the processes de-
fined by relation (10) will be given using constraint logic programming (CLP) method
[41, {7] impleménted in a constraint programming (CP) language Oz, which is a tool of
the Mozart CLP system [4].

Two basic techniques of constraint programming are constraint propagation and con-
straint distribution. Constraint propagation is an efficient inference mechanism designed
to narrow the variable domains. It is based on a logical analysis of the constraints to
derive the new constraints, which define a smaller space of the admissible solutions.
For instance, in case of the following domain constraints X<Y & Xe[5,14] & Ye<[1,10]
constraint propagation can narrow the domains of X and Y to X<[5,9] and Ye[6,10]. It
can analyse a domain of a chosen decision variable, e.g. X, starting from the smallest
values (strategy value:min; e.g. X=5) or from the biggest values (strategy value:max;
e.g. X=14). The constraint propagation reduces a size of a solution search space.
Constraint distribution splits a problem into complementary cases once constraint
propagation cannot advance further. Usually, a distribution strategy is defined on a
sequence of variables xj, x, ..., x; used in a model of a problem. When a distribution
step is necessary, the strategy selects (according to the standard strategy or user defined
heuristics) a not yet determined variable in the sequence and distributes on this variable.
For instance, the search space can be distributed into disjoint spaces by constraints x,=u
and x;#u, where an integer u 1s consistent with the set of constraints. In particular, if
X=9, then the unique solution is X=9 & Y=10, and the space defined by X#9 yet has to
be analysed. By iterating propagation and distribution, propagation will eventually
determine the solutions of a problem.
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To develop the Oz language script solving a given problem a model and a distribution
strategy have to be designed. A model of a problem is a representation of the problem
as

a finite domain one. A model specifies the variables and the constraints representing the
problem. The art of constraint programming consists in finding for a problem a model
and a distribution strategy that yield the smallest and computationally feasible search
tree [4], [7].

5.1. CP model design .

The problem considered consists in finding (if exist) all starting resource allocation
times a,(0)e[0,7) (10) of the processes, where i=1,2,...,n, for which a waiting-free
schedules exist for a given n-process system.

Behaviour of the n-process system can be analysed in any time interval Bi=aK0),
ai(0)+c) such that 0 < ay(0) < ay0)+c < T, where ke {1,2,...,n} & ceN. It can be noticed
that for c=cmax=max(cy,...,c,), i.e. cmax is a cycle time of the slowest process, the in-
terval By is the smallest one for which each process P; receives access to the shared
resource at least once. Therefore it is enough to consider starting resource allocation
times a{0)e[a(0), a0)+cmax). In particular, it is possible to choose ai(0) equal to a
starting time of the slowest process P; and to assume that the observation zone starts at
a0)=0. Hence, for cmax=c,, domains of variables a;(0) are defined by the following
constraints: ' )

a0y=0 & 0<qg(0)<¢ & c=max(cy,...,Cp) (1H

In order to solve the problem considered all values of a{0) (11) for which local starting

times #,0)e[0,c;) (4) and 5i{0)€[0,c) (5) fulfilling constraints (9) exist, have to be
found, where i<j & ijje{1,2,...,n}. By introducing variables

$;7a(0)-a{0) & a,(0)2ay(0) (12)

$;=a{0)-a(0) & a(0)>a(0), (13)

which denote a distance between any starting resource allocation times of the processes,
it is possible to derive new constraints integrating constraints given by (9) and (11).,
From (11) a{0),a(0)€[0,c;), hence also 55,8:€[0,c1), where c=max(cy,....c,) & i<j &
ije{l,2,.,n}/{k}. According to (12) s=a 0)-ay0)=a(0) and from (13) sr=a(0)—.
ai(0)=a{0). Hence, taking into account (11) s4i,847€[0,c,). The following conditions hold:

8;7=a{0)-a(0)=[a(0)-ay(0)] — [a{0)-a,(0)] = Sg—Su & Sy > sy (14)
sj=a{0)-a(0)=[a(0)-a(0)] - [a(0)-ay(0)] = s;, - Sy & s> Sy (15)

Sijs Sjis Skis slje[oack) & ckzmax(cl’---’cn) ’ (16)

250 AUTOMATION 2005




\

The local starting times #;{0)e[0,c;) (4) and £(0)€[0,c;) (5) can be derived using the
following formulas:

t(0)=s;modc;, & ﬂ(O) sjymod ¢; (17)

Let u;=(s; d1v ¢;), where u;e NU{0}. From (1) s;=(sy div c;)c; + (s; mod ¢;) = (u,j)c,

1(0). Hence, using (4) s;=(uy)Dym;; + f{0)Dy; + y;(0) = [uymy; + f(0)1Dy + y;{0) = v;D,
+y;(0), where vy = [u;m; + f{0)]. Finally, taking into account constraint for #; and m,j,
Ji{0) (4) there is s; = v;Dy; + y(0) and v;e NU{0}. A domain of variable v; can be re-
duced. For s;e[0,c,) (16) there is 0<vyD;+y(0)<c, & y(0)€[0,D;) (4). Hence,
0<v;<cy/Dy. Assuming condition (9) and denoting y;=y;(0) the following formulas,
defining a distance between starting resource allocation time of P; and starting resource
allocation time of P;, hold:

Sy:vszlj +yij & VijG[O, C]/D,/) & y,-je[r,-, D,j—l‘]] (18)
Corresponding formulas defining distance s;,€[0,c,) (16) are given below:

=viDi+y; & vi€l0, c/Dy) & yuelry, Dy —ri (19)

Using condition (18) and (19) it is possible to transform the problem considered to the
following constraint programming problem. :

Given is the n-process system with the operation times of the processes specified by
ZT=(r;0,), where r,,0,€N are defined in the uniform time units and i=1,....n. A cycle
time of a process P; is defined as ¢;=r; + 0,. Let a starting time of the slowest process
P,, where c=max(ci,....c,) & kef{l,..,n}, is such that g(0)=0. Starting times
a{0)e[0,c,) of the processes, where ie{l,...,n}/{k}, are defined in relation to the time
a{0)=0. Let a time shift s;=a{0)—a(0)=a(0), where s,,€[0,c;), and a time shift for any
two P;, P;, where i<j & ije{1,2,...,n}/{k}, is defined according to (14) as s; = s — Sk
for sy; > sy, or is defined according to (15) as s;;= sy — Sy, for 53, 2 sy The problem is to
find, if exist, all s,;€[0,¢;) where ie{1,2,...,n}/{k}, and all s, s;€[0,c;) where i</ &
ije{l,2,...,n}/{k}, such that constraints (18) and (19) hold.

A CP-based problem defined by a CP model of a given n-process system can be imple-
mented using CLP language Oz and a programming system Mozart [4], [7].

5.2. Computational experiment

A solution of a problem of finding starting times of the processes for which waiting-
free schedules exist will be illustrated on the example of a system with four cyclic proc-
esses sharing single resource. A standard first fail (ff) distribution strategy available in
the Oz language is selected to distribute the constraints on the variables. According to
this strategy variables are analysed starting from the undetermined variable for which
the number of different possible values is minimal. The intervals defining constraints
for the variables are searched using a strategy value:min.

Let us consider a 4-process system (P;, P,, P3, P4) defined by the following relations:
ZT1=(r1,0,) & r=1 & 0;=17 & ¢;=18; ZTs=(r,0,) & r=2 & 0,=10 & ¢,=12; ZT3=(r3,03)
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& r3=l & 03:5 & C3:6; ZT4:(F4,04) & 7'4:1 & 04:3 & C4=4. There is: D12=D21=
g.C.d.(Cl,Cz)=6, D13:D31=g.c.d.(cl,c3)=6, D14:D41:g.C.d.(01,C4):2, D23=D32=g.c.d.(c2,c3)
=6, Dyy=Dyy=g.c.d.(cs,cs)=4, D3y=Dy3=g.c.d.(c3,c4)=2. The system’s cycle time 7=l.c.m.
(€1,¢2,¢3,¢4)=36. Since, ¢, = max(cy,c,c3,¢4) = 18, hence process P;, where k=1, is the
slowest one. Time shifts sy, s, 514€[0,¢1). Time shifts sy, s;€[0,c;), where <G &
ije{l,2,3,4}/{1}, can be calculated using sy, 513, $14 according to relations (14) and
(15). Taking into account (18) and (19) domains of the variables 512, 813, S14€[0,¢1) and
sy, $;i€[0,c1) where i<j & i,je {2,3,4}, are defined by the following constraints:
s=vpDp+tyn & vipel0, ci/Dy) & ypelr, Dy~ rk;

siy=visDis +yi & vize[0, c1/Dy3) & yis€lr, Dis—r);

$16= V1D +y1s & vis€[0, c//Dis) & yruelry, Dis—rdl;
SB=Su—ﬁ2&SwZﬁz&sx:VnDn+Mn&VnEWJWDn)&YHEVLDB*hL
S32=812— 813 & $12 2 813 & 53 = v3Dsy + 32 & vi2€[0, ci/Dy,) & y€e[r;, Dy, ~ rl;
Su=ﬁ4“ﬁ2&smZSn&SM:VﬂDM+MM&VMGWAWDM)&yMEVLDm—HL
S=S12 -S4 & 5132514 & 40 = vpDyy +ya & v €[0, c1/Day) & Yar€lra, Dy — 1y];
SMZSM_ﬁS&SMZSB&SM:VMDM+%4&VMEWMWDM)&yMEVbDM‘UL

® 5437513~ 514 & 513 2 514 & 543 = vi3Das + y43 & viz€[0, ¢1/Ds) & Yas€lra, Dyz —13].
Taking into account the parameters of the 4-process system the following relations
hold: .

812, $13, 514, 5235 S245 34, $32, Sa2, S43€[0, 18);

vi2€[0, 3), yia€e[1, 4]; vi3€[0, 3), yi3e(1, 5); vis€[0, 9), yis€ll, 1];

vas, vi2€[0, 3), ya3€[2, 5], ynell, 4]; va, var [0, 4.5), yuel2, 3], ya2€[1, 2]; since vy,
vape NU{0}, therefore vy, v4,€[0, 4]; vag, va3€[0,9), yaa€l, 1], yze[l, 1].

A model presented can be implemented using predefined abstractions available in the
Oz language. The executable script given below can find solution vectors defined by
(5125 $13, S14s iy Smms Spgs Y125 Y13, Vids Vi Ymns Vpg)s Where i#j & ije{2,3}, mzn &
m,ne{2,4}, prq & p,ge {3,4}. In particular, the program generates solution vectors in
case Of(Slz,S13,314,323,S24,S34,)42,}h3,J44,}b3,)b4,)h4)

local Find in
proc {Find Root}
512 S13 814 S23 524 S$34 Y12 Y13 Y14 Y23 Y24 Y34 V12 V13 v14
V23 V24 V34 D12 D13 D14 D23 D24 D34
in
Root=s501(s12:512 s13:513 s14:S14 s23:523 524:524 s34:534
y12:Y12 y13:Y13 yl4:Y14 y23:Y23 y24:Y24 y34:Y34)
%domains of variables
S512::0#17 S13::0#17 S14::0#17 S23::0417 S24::0417 S34::04#17
D12::6#6 DI13::6#6 D14::242 D23::646 D24::444 D34::2#2
V12::0#2 V13::042 VI14::0#8 V23::042 V24::0#4 V34::048
Y12::14#4 Y13::14#5 Y14::14#1
Y23::2#5 %for Y32 change into 1#4
Y24::2#3 %for Y42 change into 142
¥Y34::14#1 %for Y43 the same relation holds 1#1
$constraints for variables §23, S24, 534
S23=:513-512 S13>=:512 S24=:514-S812
S14>=:812 S34=:514-513 S14>=:513
S12=:V12*D12+Y12 S13=:V13*D13+4Y13 514=:V14*D14+Y14
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§23=:V23*D23+4Y23 S24=:V24*D24+Y24 S34=:V34*D34+Y34
%start propagation and distribution ’
{FD.distribute ff Root}
end

{Browse {SearchAll Find}} %$find all solutions
end

In the case considered a total number of solutions is equal to 27. Solutions with the
same values of (y12, Y13, V14, Y23, V24, ¥34) define a four subsets of starting times, which
belong to the same waiting-free schedules. The examples of the solution vectors for
each subset are as follows:
L4 SOI(S12: l, 513:4, S14Z7, S23I3, S24Z6, S34I3, V2! 1, y1324, Yi4: 1,_}12323, y24I2, y34:l);

a starting time of a waiting-free schedule of type 1; the schedule is shown in Fig.3;
o s0l(s12:3, 513:8, 51419, $23:5, 524:6, $34:1, y12:3, ¥13:2, y1ail, y23i5, 4.2, y3a:l);

a starting time of a waiting-free schedule of type 2;
o s0l(s12:2, 513:4, 51415, $23:2, 524:3, S34:1, y12:2, y13:d, yral, y23:2, 32413 y34 1);

a starting time of a waiting-free schedule of type 3;
o sol(syp:4, 513:8, 514111, 50514, 5247, 83433, Y124, Y132, yial, Ya3id, y24:3, yaail);

a starting time of a waiting-free schedule of type 4.
In the other cases, i.e. (523, 524, 543), (523, S42, 534), (523, S42, 543), (832, $24, $34), (832, 524, S43),
(532, S42, S34), (832, S42, 543), @ number of solution vectors defined is the same as in the
first case. All derived starting times belong to the four different waiting-free schedules
the same as previously defined typel, type 2, type 3 and type 4.

0 36 )

| I
P1 JROOOOOOQCOOOO000OOOROOCOOCCOCCO00000Q | ROOOO00O. .

I ]
P2 | ORROOOOOOOOOQRROOOCOOCOOORROCOO0OOCO0 | ORROOOOO. . .

| I
P3 | OQOOOROOOOOROOOOOROOOOOROOOOOROOOOORO | OOOOROCO. . .

l l
P4 | OOOROOOROOOROOOROOOROOCOROOOROOOROOOR | OOOROOOR. . .
| T = 36 |

Fig 3. A waiting-free schedule of type 1. A letter R denotes a time unit of using shared
resource and a letter O — a time unit of using non-shared resource.

6. CONCLUSIONS

A problem of finding waiting-free schedules for repetitive manufacturing processes
using common resources in mutual exclusion has been considered. In many cases sys-
tems of processes can be seen as composed of subsystems with » processes sharing
single resource. Using necessary and sufficient conditions for waiting-free execution of
the n-process system and modulus arithmetic properties a CP-based method for finding
starting times of the processes for which waiting-free schedules exist has been pre-
sented. For a given operation times of the processes the method allows derive, if exist,
all possible initial resource allocation times for which a waiting-free execution is possi-
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ble. The method has been implemented using constraint logic programming language
Oz and tested in case of a given 4-process system. An analysis of solution vectors al-
lows answer to a question what is a number of different waiting-free schedules for a
given n-process system. The CP-method designed can also be used to automate search-
ing of the operations times for which exist starting times of the processes belonging to a
waiting-free schedule. The extension of the method requires a procedure for calculating
the greatest common divisor of two integers representing cycle times of processes P;, P,
where ije{1,2,...n} & i#. In the example presented the Oz script designed uses the
greatest common divisors as a given data.

The n-process system is a deadlock-free system. Further research can be focused on a
problem of finding waiting-free schedules for systems of cyclic processes with dead-
lock possibility.
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