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CP APPROACH TO DESIGN OF REPETITIVE 
MANUFACTURING PROCESSES 

A class of repetitive concurrent manufacturing processes using common 
resources in mutual exclusion is considered. A system with any resource 
requests structure can be seen as a composition of subsystems with n cy-
clic processes sharing one resource. A problem of finding a schedule 
such that no process waits for access to the resources has been formu-
lated as a task of constraint programming. State space of the problem's 
solutions has been reduced by use of necessary and sufficient conditions 
for existence of a waiting-free n-process realisation. An example illustrat-
ing a method of problem solving using interval constraint logic pro-
gramming has been presented. 

ZASTOSOWANIE METODY PROGRAMOWANIA Z OGRANICZENIAMI DO 
PROJEKTOWANIA POWTARZALNYCH PROCESÓW PRODUKCYJNYCH 

Rozpatrywana jest klasa powtarzalnych, współbieżnych procesów pro-
dukcyjnych wykorzystujących wspólne zasoby w trybie wzajemnego wy-
kluczania. System o dowolnej strukturze żądań zasobowych procesów 
może być rozpatrywany jako połączenie podsystemów złożonych z n pro-
cesów cyklicznych wspóldzielących jeden zasób. Problem wyznaczania 
harmonogramu, który gwarantuje nie występowanie oczekiwania proce-
sów na dostęp do zasobów sformułowano jako zadanie programowania z 
ograniczeniami. Przestrzeń rozwiązań problemu zmniejszono dzięki wy-
korzystaniu warunków koniecznych i wystarczających dla istnienia reali-
zacji n-procesu, w której żaden proces nie czeka na dostęp do zasobów. 
Przedstawiono przykład ilustrujący metodę rozwiązywania problemu w 
oparciu o programowanie logiczne z ograniczeniami zadanymi w postaci 
przedziałów. 

1. INTRODUCTION 
Planning production flow in discrete production systems with concurrently executed 
processes using common resources in mutual exclusion requires solving a problem of 
resource conflicts resolution [3], [6], [9]. A solution of this problem is the best schedule 
taking into account certain evaluation criterion, defining an order of using the re-
sources, e.g. machines, stores, tools, by the processes and guaranteeing deadlock-free 
and starvation-free execution of the processes. 
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Processing a batch of work-pieces according to a given production route, defining a 
sequence of operations provided for the final product, creates a set of repetitive produc-
tion processes. Each operation in the route is using one production resource for a cer-
tain amount of time. Assuming that the following work-piece is introduced to the sys-
tem after finishing the previous one the cyclic process is created with a cycle time equal 
to the sum of the operation times specified in the executed production route. In case 
when several products is processed at the same time the production system can be seen 
as a system of concurrent cyclic processes sharing resources in mutual exclusion [2], 
[3]. 

In this work systems of cyclic processes with no deadlock possibility are considered [3], 
[9]. This type of systems in many cases can be analysed as composed of subsystems 
consisting of several processes sharing one resource. The problem to be solved in this 
work consists in finding a schedule with no process waiting for access to the resources 
and therefore does not require resource conflict resolution. In particular for a given 
system of n cyclic processes sharing a resource and fixed operation times the starting 
times of the processes such that a waiting-free schedule exists are looked for [11]. As-
suming that the operation times can be chosen from the bounded set of discrete values 
solving the problem is equivalent to design of a production system with the following 
properties: 

• The processes will never wait for access to the resources; 
• The initial state of the system, defined by starting times of production tasks, belongs 

to the system's cyclic steady-state; 
• The system's cycle time is equal to the least common multiple of cycle times of the 

processes. 
In order to find a waiting-free schedule for the n-process system a model based on 
modulus equations presented in [10], [11] will be used. The model allows define a set 
of constraints on starting times of the processes, which guarantee existence of a wait-
ing-free schedule. These constraints can be implemented by a program defined in a 
constraint logic programming language Oz [4], [11] solving the problem using its pre-
defined searching procedures based on interval analysis and reduction of domain of 
decision variables [7]. For the operations times given the constraint programming 
method proposed allows finding the all possible solutions, i.e. a set of all starting times 
of the processes leading to waiting-free execution of the system (if exist), or find the 
specific solution, e.g. the first solution fulfilling a certain criterion (if exists). 
2. SYSTEM OF PROCESSES 
A system of repetitive manufacturing processes consists of a set of processes sharing 
common resources in mutual exclusion; see Fig. 1 . Each process P,, (i=1,2,...,n), repre-
senting one product processing, executes periodically a sequence of the operations 
using resources defined by Zi = (R11, R12, ..., R1102), where IW denotes a length of produc-
tion route. The operations times are given by a sequence ZT, = (rd, ro, ro)), where 
rd, ro, rikoEN are defined in the uniform time units (N— set of natural numbers). For 
instance the system shown in Fig.1 consists of ten resources and seven processes. The 
resources R1, R2, R3, R4 are shared ones, since each one is used by at least two proc-
esses, and the resources R5, R6, R7, R8, R9, R10 are non-shared because each one is exclu-
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sively used by only one process. The processes P1, P?, 133, P4, P5, P6, P7 are executing 
operations using resources given by the sequences: Z1 = (R1, R2, R3, R4), Z2= (R1, R5), Z3
= (R1, R6), Z4= (Ri, R7), Z5 = (R2, R8), Z6 = (R3, R9) and Z7 - (R4, R10). The system con-
sidered can be seen as composed of four subsystems each one with n cyclic processes 
sharing a single resource. The n-process subsystems are defined as follows: subsystem 
SI = (P1, P2, P3, P4) - the processes are using resource RI; subsystem S2 = (P1, P5) - the 
processes are using resource R2; subsystem 53 = (P1, P6) - the processes are using re-
source R3; subsystem S4 = (P1, P7)- the processes are using resource R4. Because the 12-
process subsystems have no common resources it is possible to analyse their behaviour 
separately to find the initial resource allocation times of the processes for which wait-
ing-free schedules exist. The schedules designed for each subsystem can be joined to-
gether to obtain a waiting-free schedule for the whole system. 

Fig.l. System of repetitive manufacturing processes with concurrency: P1, P2, 1:13, Pą, 

P5, P6, P7 -processes; R1, R2, R3, R4, R5, R6, R7, R8, R9, RIO- resources. 

The n-process system PO consists of n cyclic processes sharing a sin-
gle resource, e.g. subsystem of processes (PI, P2, P35 PO sharing resource R1 shown in 
Fig. 1. Each process Pi (i=1,2,...,n) executes periodically a sequence of the operations 
using resources defined by Z, = (R, 0 i), where R denotes a shared resource used by the 
processes and O, denotes a non-shared resource used by process P. The operations 
times are given by a sequence ZTi = (r1, oi), where r 1, oj EN. A cycle time of P, is de-
fined by relation c, = r 1 + oj. For instance in the subsystem (P1, P2, P3, P4) (Fig.1) the 
shared resource R=Ri, the resources R2, R3, R4 are represented by the non-shared re-
source 0 1, the resources 0 2-R5, 0 3=1?6, 0 4-R7. 
The first operation executed by each processes (the sequence Zi always begins with 
shared resource R) can be initiated at different times in relation to time tp=0. In the 
following it will be assumed that one of the processes, e.g. the process with the greatest 
cycle time, always starts at time tr=0 and the other processes start at times t tp. It was 
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shown [10], [11] that behaviour of the n-process system depends on the operation times 
and starting times (phases) of the component processes. The system's dynamics can be 
analysed taking into account dynamics of each 2-process subsystem [1]. In the follow-
ing some results used to solve the problem of waiting-free schedule design will be re-
called. 

3. MODELLING DYNAMICS 
A natural model for behaviour analysis of discrete processes with periodicity is 
modulus algebra [5], [8]. Using its properties it is possible to design recurrent module 
equations defining times of any process resource request in relation to a chosen process 
request and to find conditions guaranteeing waiting-free execution of the n-process 
system. 

3.1. Basic properties of modulus algebra 
It is known that for any integer aEZ and any p EN (p>0) the following relation holds: 

a = wp + r (I) 
A number wEZ is a quotient and number rEZ & "r< p is a remainder [8]. The repre-
sentation (1) is unique since for a given p it is w = a div p and r = a —wp = a mod p. 
Two integers a,bEZ are considered modulus pEN equal if a = b + kp and kEZ. This 
special equality is called "congruence". It would be said that a and b are congruent 
(module equal) with respect to p. Congruence is defined with respect to a given p, and 
any and all values of keZ. A modular equality of a and b is written as a = b (mod p) or 
a b (mod p). Two integers a,bEZ congruent with respect top, divided by p, have the 
same remainder 0:s-r< p. This follows from relations a = wp+r&a=b+kp, hence b 
= wp — kp + r = (w—k)p + r. The last property can be written using mod operator: r = a 
mod p = b mod p. It can also be noticed that: 

VaEZ & VpEN if O a <p, then a mod p = a (2) 

For the n-process system the modulus algebra can be used to derive shifts between 
times of resource requests of any process and the nearest resource allocation times of a 
chosen process. The shifts will be used as local starting times of the processes. 
3.2. Local starting times of the processes 
Consider a system of processes Pn) sharing a single resource (Fig.1). 
Let x,(k)ENu{0}, where k=0,1,2,3,..., denote times at which a process Pi, where 
iE {1,2,...,n}, requests access to the shared resource and ai(k)ENu {0} times at which it 
receives access to the resource. There is O x,(k) a(k) and it is assumed that a starting 
time of a chosen process P, is equal to x,(0) = O and a starting time of any process /3.,, 
where j#i is such that xi(0) 0. 
Assuming that the processes are executed independent each other (no resource sharing) 
subsequent resource requesting times xi(k) are equal to the allocation times a i(k) and can 
be calculated according to the equation x,(k+1)= a1(k+1)= a,(k)+ c, (Fig.2). Therefore, 
x,-(k) = a1(k) = a,(0) + k*ci. In case of concurrent execution of processes the relevant 
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formula has to take into account a waiting time w,(k). Hence, a1(k+1)= x1(k+1) + wi(k)=-

a,(k) + ci + wi(k). A parameter ty(/)ENutOt (Fig.2), where1=0,1,2,..., defines distance 
between a resource request time x(l) of the process Pi and the nearest resource alloca-
tion time a,(k) xi(/) of the process P. The shift t(l) can be used as a local starting 
time of P, in relation to resource allocation time of Pi. 

Oi 

t 
a1(k) r O. ai(k)+ci

xj(1) xj(1)+ei

Fig. 2. Resource request/allocation times. 

Previous research showed that for any 2-process subsystem (P„ pi) of the n-process 
system, where i#j & ij {1,2,...,n}, it is possible to derive values t,(/), 1=0,1,2,..., using 
recurrent modulus equations [10], [11]. In case when each process execution is inde-
pendent to the others then resource request times are equal to resource allocation times, 
i.e. xj(1)=a11). Therefore, times tug) can be calculated from the equation: 

tii(/) = x,(/) mod c, = a1(l) mode, = [910) + kJ mod ci & 
& ty(/)E[0,c1) & a(0)=O & ci1(Op0 

(3) 

It can be proven [10], [11] that for independent execution of the processes (no resource 
sharing) resource request times of process Pi, calculated in relation to resource alloca-

tion times of process P1, can occur only at local times t,i(/)E AO (3) given by formula: 

tu(1) = aj(1) modei =fii(/)Dij + yii(1) & /=0,1,2,... (4) 

where & ci=Diimy & c1=D11m 1 & & morniieN & 
& f j(1)=[J,-(0)+ lm,] mod mu & y11(1)=y11(0) & 
& t(0)=a(0) mod ci & f ii(0)= t11(0) div Du & yii(0)=t1j(0) mod Dii & 
& f ii(0)<mii & & g.c.d. - the greatest common divisor. 

Let 1"Ęr{0,1,...,mii-1}. From J,([)= [4(0) + /mii] mod mi] (4) it follows that a range of 
.4(/) is such that 4(/)E W. It can be shown [10] that .4(/) achieves periodically, with 
period my, all values from the set W, i.e. f ii(1)=h(l+k*rn) for k=0,1,2,... and 
10,1,2,. ..„m- 1. Therefore, function .4(l) defines permutation of the set W. 
By symmetry it is also possible to define local starting times t(l) E [0,0 as times of 
resource requests xi(/) of process P, in relation to the nearest resource allocation times 
a(k) x1(1) of process P. The corresponding formula is given according to (4) by ex-
changing the indexes i,j. 
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tii(0 = ai(1) mod ci =f,i(/)Dj, + yji,(/) & 

It is possible to show [10] that the following reverse transformations hold: 

f,./(/)=[mii — (D,—y,i(/)) div Dy] mod mi, & y/PHD — y ii(1)] mod Dy (6) 

The presented formulas can be used to define conditions, which fulfilled, guarantee 
waiting-free execution of the processes. 

4. PROGRAMMING CONSTRAINTS FOR WAITING-FREE 
EXECUTION OF PROCESSES 

Dynamics of the n-process system depends on a dynamics of its 2-process subsystems 
(Pi, Pj), where i#j & [JE 1,2,...,n} . It was shown [10] that behaviour of each subsystem 
(Pi, p) can be analysed taking into account the operation times and local starting times 
tij(/)e[0,c1) (4) of process p, calculated in relation to resource allocation times of Pi, or 
local starting times tp(/)e [0,0 (5) of the process Pi, calculated in relation to resource 
allocation times of P. In particular the following theorems define constraints for exis-
tence of waiting-free schedules of the 2-process system (Pi, Pj). 

Theorem 1. A waiting-free schedule will be executed by the 2-process system (P, Pi) if 
and only if exists starting time V0)E[0,ci), where t,;(0) =4(0)D, + yii(0) (4), such that 

r, y(0) — rj

(5) 

(7) 

When the condition (7) holds then the 2-process system's cycle time is equal to Ty =-
1.c.m.(ci,ci) = (c i*ci)IDy, where 1.c.m.(c1,ci) denotes the least common multiple. 
If the Theorem 1 holds, then also theorem taking into account ii1(0) (5) holds. This is 
because from (6) yii(/)=[Dij — yij(1)] mod Dy and for /=0 from (7) MOW j<D y there is 
yi1(0)=D — y(0) (2). Hence, from (7) ri D, —y 1(0) Dy — Since, Dr-Dji there is 

ri yii(0) Dii — ri (8) 

Theorem 2. The conditions (7) and (8) are equivalent, i.e. r, y JO) Dy — r, if and 
only if r./ yi1(0) Dii — ri. 

The n-process system consists of n(n-1)/2 different 2-process subsystems (Pi, pi) de-
fined by i<j & ijE{1,2,...,n}. If for each (Pi, Pi) constraint (7) holds, then the processes 
will never wait for access to the resources. This configuration is stable since processes 
do not disturb each other and therefore positions of any two processes will be not 
changed. Taking into account Theorem 2 the necessary and sufficient condition for 
existence of waiting-free schedule for the n-process system is given by the following 
theorem [11]. 
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Theorem 3. A waiting-free schedule will be executed by the n-process system if and 
only if for each subsystem (Pi, Pi), where i<j & iiE {1,2,...,0, exists a local starting 
time 410) E [0,C1), where ty(0)= f ii(0)Dy + y,(0) (4), or a local time t11(0) E [0,0, where 
tii(0)=fii(0)D11 + yii(0) (5), such that 

(rż _ yij(0) Dij —rj ) v (rj yii(0) ri) (9) 

When the condition (9) holds for each i<j & ijE {1,2,...,0 then a cycle time of the 
waiting-free n-process system is equal to T =1.c.m.(c1,...,c„...ci,...,c,). 
Since the n-process waiting-free system has a cyclic steady-state with a period T it is 
enough to consider starting resource allocation times 640), such that 

O ai(0) < T (10) 
• 

According to Theorem 3 in order to find all starting positions a(0) (4) of the processes, 
for which waiting-free schedules exists, a constraint based finite domain combinatorial 
problem defined by a set of constraints (4), (5), (9) and (10) over finite sets of nonnega-
tive integers has to be solved. 

5. FINDING STARTING TIMES USING CP METHOD 
Solution to the constraint based problem of finding starting times of the processes de-
fined by relation (10) will be given using constraint logic programming (CLP) method 
[4], [7] implemented in a constraint programming (CP) language Oz, which is a tool of 
the Mozart CLP system [4]. 
Two basic techniques of constraint programming are constraint propagation and con-
straint distribution. Constraint propagation is an efficient inference mechanism designed 
to narrow the variable domains. It is based on a logical analysis of the constraints to 
derive the new constraints, which define a smaller space of the admissible solutions. 
For instance, in case of the following domain constraints X< Y & XE [5,14] & YE [1,10] 
constraint propagation can narrow the domains of X and Y to Xe [5,9] and Ye [6,10]. It 
can analyse a domain of a chosen decision variable, e.g. X, starting from the smallest 
values (strategy value:min; e.g. X=5) or from the biggest values (strategy value:max; 
e.g. X=14). The constraint propagation reduces a size of a solution search space. 
Constraint distribution splits a problem into complementary cases once constraint 
propagation cannot advance further. Usually, a distribution strategy is defined on a 
sequence of variables xl, x2, ..., xk used in a model of a problem. When a distribution 
step is necessary, the strategy selects (according to the standard strategy or user defined 
heuristics) a not yet determined variable in the sequence and distributes on this variable. 
For instance, the search space can be distributed into disjoint spaces by constraints xi=u 
and xi #u, where an integer u is consistent with the set of constraints. In particular, if 
X=9, then the unique solution is X=9 & Y-10, and the space defined by X#9 yet has to 
be analysed. By iterating propagation and distribution, propagation will eventually 
determine the solutions of a problem. 
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To develop the Oz language script solving a given problem a model and a distribution 
strategy have to be designed. A model of a problem is a representation of the problem 
as 
a finite domain one. A model specifies the variables and the constraints representing the 
problem. The art of constraint programming consists in finding for a problem a model 
and a distribution strategy that yield the smallest and computationally feasible search 
tree [4], [7]. 
5.1. CP model design 
The problem considered consists in finding (if exist) all starting resource allocation 
times a,(0)E [0,7) (10) of the processes, where for which a waiting-free 
schedules exist for a given n-process system. 
Behaviour of the n-process system can be analysed in any time interval Bk=[ak(0), 
ak(0)+c) such that O ak(0)< ak(0)+c < T, where kE {1,2,...,n} & CEN. It can be noticed 
that for c=cmax=max(ci,...,c„), i.e. cmax is a cycle time of the slowest process, the in-
terval Bk is the smallest one for which each process Pi receives access to the shared 
resource at least once. Therefore it is enough to consider starting resource allocation 
times a,(0)E [ak(0), ak(0)+cmax). In particular, it is possible to choose ak(0) equal to a 
starting time of the slowest process Pk and to assume that the observation zone starts at 
ak(0)=0. Hence, for cmax=ck, domains of variables a,(0) are defined by the following 
constraints: 

ak(0)=0 & O a1(0) <Ck & ck=max(ci,...,c,) 

In order to solve the problem considered all values of a{0) (11) for which local starting 
times t(0) E [0,C,) (4) and t.ii(0) E [0,ci) (5) fulfilling constraints (9) exist, have to be 
found, where i<j & i,/ E { 1,2,...,n}. By introducing variables 

& ai(0)_a1(0) 

si,=ai(0)—ai(0) &

(12) 

(13) 

which denote a distance between any starting resource allocation times of the processes, 
it is possible to derive new constraints integrating constraints given by (9) and (11)., 
From (11) a,(0),a,(0) E [0,C/c), hence also sy,si,E[0,ck), where ck=max(ci,...,c„) & i<j & 
ij E{1,2,...,n}/ {k} According to (12) s ki=a](0)—ak(0)=a;(0) and from (13) sk,=a,(0)—
ak(0)=a,-(0). Hence, taking into account (11) 5ki,ski e[0,ck).The following conditions hold: 

s rai(0)—ai(0)=[a j(0)—ak(0)] — [ai(0)—ak(0)i= ski — Sk  i

sp=ai(0)--ai(0)=[ai(0)—akPi— [9,(0)—ak(0)] = ski — ski

sp, ski, Ski E [0,C0 & 

& Skj Ski (14) 

& Ski (15) 

• (16) 
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The local starting times tii(0)e[0,c,) (4) and t(0) E [0,0 (5) can be derived using the 
following formulas: 

tii(0)= s, mod ci & ti1(0) = sii mod ci (17) 

Let uir(sii div ci), where uyeNu{0}. From (1) sr(sy div ei)ci + (s, mod ci) = + 
t(0). Hence, using (4) + f i(0)Dy + y(0) = [um y +fii(0)]Dy + y(0) = vip ('
+ y(0), where vy = [uytn, +MO)]. Finally, taking into account constraint for uy and tnii, 
J(0) (4) there is sij = viiDy + y(0) and viieNu{0}. A domain of variable vii can be re-
duced. For sue [0,ek) (16) there is Ov +yy(0)<ck & yy(0)E[O,Dii) (4). Hence, 
(Xv ek/Dii. Assuming condition (9) and denoting yii=yy(0) the following formulas, 
defining a distance between starting resource allocation time of Pi and starting resource 
allocation time of Pi, hold: 

sy = viiDii + yii & vi - [O, ck/Dii) & yije [ri, Dii — ri] 

Corresponding formulas defining distance spe [0,ck) (16) are given below: 

sii viiDii + yii & vii e [O, ckiDji) & yjic[rj, ri] 

(18) 

(19) 

Using condition (18) and (19) it is possible to transform the problem considered to the 
following constraint programming problem. 
Given is the n-process system with the operation times of the processes specified by 
ZT,=(ri,o,), where r„oi eN are defined in the uniform time units and i=1,...,n. A cycle 
time of a process Pi is defined as ci = r, + Let a starting time of the slowest process 

Pk, where ck=max(ci,...,cn) & ke {1,...,n}, is such that ak(0)=0. Starting times 
a,(0) E [0,C0 of the processes, where ie {1,...,n}/{k}, are defined in relation to the time 
ak(0)=0. Let a time shift ski=a,(0)—ak(0)=ai(0), where sk, e [0,ck), and a time shift for any 
two Pi, P, where i<j & E {1,2,...,n}/{k}, is defined according to (14) as s, = ski — skr, 
for skj ski, or is defined according to (15) as si, = sk, — ski, for ski ski. The problem is to 
find, if exist, all ski E [0,C0 where i E {1,2,...,n}/{k}, and all sy, sp E [0,C0 where i<j & 
ije {1,2,...,n}/ {k} , such that constraints (18) and (19) hold. 
A CP-based problem defined by a CP model of a given n-process system can be imple-
mented using CLP language Oz and a programming system Mozart [4], [7]. 
5.2. Computational experiment 

A solution of a problem of finding starting times of the processes for which waiting-
free schedules exist will be illustrated on the example of a system with four cyclic proc-
esses sharing single resource. A standard first fail (f1) distribution strategy available in 
the Oz language is selected to distribute the constraints on the variables. According to 
this strategy variables are analysed starting from the undetermined variable for which 
the number of different possible values is minimal. The intervals defining constraints 
for the variables are searched using a strategy value:min. 
Let us consider a 4-process system (P1, P2, P3, PO defined by the following relations: 
ZT1=-(rboi) & r1=1 & o1=17 & c1=18; ZT2=(r2,o2.) & r2=2 & 02=10 & C2=12; zT3=(r3,03) 
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& r3-1 & 03=5 & c3-6; ZT4-(r4,04) & r4-1 & 04-3 & 
c 4

-4. There is: D 12=D2i= 
g.c.d.(c1,c2)=6, Di4-D41-g.c.d.(ci,c4)=2, D23-D32-g.C.d.(C2,C3) 
-6, D24=D42=g.e.d.(C2,C4)=4-4, D34-D43-g.c.d.(c3,c4)-2. The system's cycle time T=1.c.m. 
(ci,c2,c3,c4)=36. Since, c1 = max(c1,c2,c3,c4) = 18, hence process Pk, where k=1, is the 
slowest one. Time shifts s12, sI3, si4E[0,c1). Time shifts su, si,E[0,c1), where i<j & 
ijc (1,2,3,4)41), can be calculated using s12, s13, s14 according to relations (14) and 
(15). Taking into account (18) and (19) domains of the variables su, S13, S14 E [0,C1) and 
sy, si,E[0,ci) where i<j & ijE (2,3,4), are defined by the following constraints: 
• S12 - Vi2D12 +y12 & v12E[0, ci/D12) & y12 E[ri, D12 - r2]; 

• S13 - V13D13 +y13 & V13 E [O, Ci/D13) & y13 E [ri, D13 - r3]; 
• S14 = 114D14 ±Y14 & V14 E [0, C1D14) & Y14E[r1, D14 - ra j; 
• S23 = S13 -512 &513 S12 &s23 - V23D23 ±y23 & V23 E [0, Cl/D23) & Y23 E [r2, D23 -r 3]; 
• 532 = 512 - S13 &S12 S13 &s32 - V32D32 + y32 & V32 E [0, C1/D32) 8E. y32 E [r3, D32 - r2]; 
• S24 - S14 - Si2 8L Si4 - . 512 & S24 - V24D24 + Y24 & V24 E [0, C i/D24) & Y24 E [r2, D24 - r41; 
• S42 - 512 - S14 & Si2 ?.. Si4 & S42 = V42D42 1- Y42 & V42 E [0, C1/D42) & Y42 E [nt, D42 - r21; 
• S34 - Si4 - S13 8L Si4 -. Si3 & S34 = V34D34 +Y34 & V34 E [O, CID34) & y34 e [r3, D34, -4-4]; 
• S43 - 513 - S14 & S13 S14 & S43 - V43D43 ± 43 & V43 e[0, ci/D43) & Y43 E [7-4, D43 - rd• 
Taking into account the parameters of the 4-process system the following relations 
hold: • 
S12, S13, 814, S23, S24, S34, S32, S42, S43 E [O, 18); 
v12e[0, 3), Y12 E[1, 4]; v13E[0, 3),Y13E[1, 5]; v14E[0,9),Y14E[1, 1]; 
V23, V32 E [0, 3), Y23 E [2, 5], Y32 E[l, 4]; V24, V42 e [O, 4.5), Y24E[2, 3], Y42 E[1, 2]; since 1724, 
V42 EATu{0}, therefore V24, V42 E [O, 4]; 1/34, V43 E [O, 9), y34 E [ 1 

, 1 , y43 
[ 1 , 1]. 

A model presented can be implemented using predefined abstractions available in the 
Oz language. The executable script given below can find solution vectors defined by 
(512, S13, S14, S if, S mn, Spq> Y125 Y13, Y14, Y ij, Y mn) Ypq), where /*j & 1,/u (2,3), In#n & 
m,n e (2,4), p#q & p,q e (3,4). In particular, the program generates solution vectors in 
case of (S12, S13, S14, S23, S24, 534, Y12, Y13, Y14, Y23, Y24, Y34)• 

local Find in 
proc {Find 

S12 S13 
V23 V24 

Root} 
S14 S23 S24 S34 Y12 Y13 Y14 Y23 Y24 Y34 V12 V13 V14 
V34 D12 D13 D14 D23 D24 D34 

in 

Root=sol(512:S12 513:S13 s14:514 s23:523 524:S24 s34:S34 
y12:Y12 y13:Y13 y14:Y14 y23:Y23 y24:Y24 y34:Y34) 

%domains of variables 
S12::0#17 S13::0#17 S14::0#17 S23::0#17 S24::0#17 S34::0#17 
D12::6#6 D13::6#6 D14::2#2 D23::6#6 D24::444 D34::2#2 
V12::0#2 V13::0#2 V14::0#8 V23::0#2 V24::0#4 V34::0#8 
Y12::1#4 Y13::1#5 Y14::1#1 
Y23::24t5 %for Y32 change into 1#4 
Y24::2#3 %for Y42 change into 1#2 
Y34::1#1 %for Y43 the same relation holds 1#1 
%constraints for variables S23, S24, S34 
S23=: S13-S12 S13>=: S12 S24=:S14-S12 
S14>=: S12 S34=: S14-S13 S14>=: S13 
S12=:V12*D12+Y12 S13=:V13*D13+Y13 S14=:V14*D14+Y14 
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S23=:V23*D23+Y23 S24=:V24*D24+Y24 S34-:V34*034+Y34 

%start propagation and distribution 
{FD.distribute ff Root} 
end 

{Browse (SearchAll Find}} %find all solutions 

end 

In the case considered a total number of solutions is equal to 27. Solutions with the 
same values of (Y12, Y13, Y14, Y23, Y24, Y34) define a four subsets of starting times, which 
belong to the same waiting-free schedules. The examples of the solution vectors for 
each subset are as follows: 

SOKS12: 1, S13:4, 814:7, s23:3, S34:3, Y12: 1, yi3:4, y14: 1, y23:3, .Y24:2, Y34:1); 
a starting time of a waiting-free schedule of type 1; the schedule is shown in Fig.3; 

S01(S12:3, 513:8, 514:9, s23:5, S24:6, 534:1, yi2:3, yi4: 1 , Y23:51 Y24:2 1 Y34: 1); 
a starting time of a waiting-free schedule of type 2; • 
sol(s12:2, s13:4, s14:5, s23:2, 524:3, s34: 1, y12:2, y13:4, Y14: 1, ) 223:2 1 ) 224:3 , Y34:1); 

a starting time of a waiting-free schedule of type 3; 
SOKS12:4, 513:8, S14: 1 1 , 523:4, s24:7, s34:3, Y12:4, y13:2, Y14: 1 , Y23:4 , Y24:3 , ) 234: 1); 
a starting time of a waiting-free schedule of type 4. 

In the other cases, i.e. (S23, S24, S43), ( 8 23, S42, 3 34), ( 923, s42, S43), ( 5 32, S24, S34), (532, S24, S43), 

(S32, S42, 5 34), (532, S42, S43), a number of solution vectors defined is the same as in the 
first case. All derived starting times belong to the four different waiting-free schedules 
the same as previously defined type 1, type 2, type 3 and type 4. 

O 36 

Pl IR00000000000000000R00000000000000000IR0000000. . . 

P2 IORR0000000000RR0000000000RR000000000IORR00000. . . 

P3 I0000R00000R00000R00000R00000R00000R010000R000. . . 

P4 1000ROOOROOOROOOROOOROOOROOOROOOROOORIOOOROOOR. . . 

T = 3 6 

Fig.3. A waiting-free schedule of type I. A letter R denotes a time unit of using shared 
resource and a letter O - a time unit of using non-shared resource. 

6. CONCLUSIONS 
A problem of finding waiting-free schedules for repetitive manufacturing processes 
using common resources in mutual exclusion has been considered. In many cases sys-
tems of processes can be seen as composed of subsystems with n processes sharing 
single resource. Using necessary and sufficient conditions for waiting-free execution of 
the n-process system and modulus arithmetic properties a CP-based method for finding 
starting times of the processes for which waiting-free schedules exist has been pre-

sented. For a given operation times of the processes the method allows derive, if exist, 
all possible initial resource allocation times for which a waiting-free execution is possi-
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ble. The method has been implemented using constraint logic programming language 
Oz and tested in case of a given 4-process system. An analysis of solution vectors al-
lows answer to a question what is a number of different waiting-free schedules for a 
given n-process system. The CP-method designed can also be used to automate search-
ing of the operations times for which exist starting times of the processes belonging to a 
waiting-free schedule. The extension of the method requires a procedure for calculating 
the greatest common divisor of two integers representing cycle times of processes P„ 
where 4 E 0 & In the example presented the Oz script designed uses the 
greatest common divisors as a given data. 
The n-process system is a deadlock-free system. Further research can be focused on a 
problem of finding waiting-free schedules for systems of cyclic processes with dead-
lock possibility. 
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