Nowe struktury układów regulacji ze śledzeniem modelu i ich właściwości

Jerzy Brzózka Leszek Kaszycki

O bszerną prezentację różnych struktur ze śledzeniem modelu (*Model Following Control* – MFC) przedstawiono w pracy [6]. Wykonana tam i w innych pracach [1, 3, 4, 5] analiza matematyczna, symulacje i przeprowadzone eksperymenty praktyczne tych układów pokazały, że struktury typu MFC mają cały szereg zalet, z których najistotniejszą jest odporność na zmiany parametrów obiektu (procesu). Jest to bardzo korzystna właściwość, odróżniająca ten układ od innych układów regulacji z modelami [2]. Inne układy mają dobre wskaźniki jakościowe pod warunkiem dużej zgodności charakterystyk modelu i procesu, a spełnienie tego wymagania prowadzi wprost do bardziej skomplikowanych, a tym samym droższych w realizacji układów adaptacyjnych [6].

W niniejszym artykule przedstawiono zmodyfikowane struktury MFC opisane w [6] oraz przeprowadzono ich analizę.

Bazowe struktury MFC

Z rys. 1 wynika, że proces P(s) jest sterowany sumą dwóch sygnałów: $u_R(s)$ z regulatora procesu R(s) oraz um(s) z regulatora modelu M(s). Oba regulatory – modelu i procesu powinny zawierać działanie całkujące (w przypadku procesu o charakterze inercyjnym), po to aby uzyskać $y_m(s) = r(s)$ oraz $y(s) = y_m(s)$.

Po wykonaniu nieskomplikowanych przekształceń można dla schematu z rys. 1 wyznaczyć transformatę odpowiedzi *y*(*s*):

$$y(s) = \frac{R_m(s) P(s) (1 + R(s) M(s))}{(1 + R(s) P(s)) (1 + R_m(s) M(s))} r(s) + \frac{z(s)}{1 + R(s) P(s)}$$
(1)

Z zależności (1) wynika, że tłumienie zakłóceń prowadzi tylko regulator R(s) – regulator $R_m(s)$ nie ma wpływu na działanie układu od strony zakłóceń. Natomiast na zmiany parametrów procesu oddziałuje zarówno regulator procesu, jak i regulator modelu.

dr inż. Jerzy Brzózka i dr inż. Leszek Kaszycki – Akademia Morska w Szczecinie

Rys. 1. Schemat blokowy podstawowej struktury MFC. Oznaczenia transmitancji i transformat: M(s) – model, P(s) – proces, $R_m(s)$ – regulator modelu, R(s) – regulator procesu, r(s) – wartość zadana, z(s) – zakłócenia, y(s) – wielkość regulowana, $y_m(s)$ – wielkość wyjściowa z układu regulacji modelu

Poprawę tłumienia zakłóceń można uzyskać w zaproponowanej również w [6] strukturze MFC/IMC (*Internal Model Control*) – rys. 2.

Rys. 2. Schemat blokowy układu MFC/IMC

W tym przypadku transformata odpowiedzi układu ma postać:

$$y(s) = \frac{R_m(s) P(s) (1 + R(s) M(s))}{1 + P(s) (R_m(s) + R(s) + R_m(s) R(s) M(s))} r(s) + \frac{z(s)}{1 + P(s) (R_m(s) + R(s) + R_m(s) R(s) M(s))}$$
(2)

Z zależności (2) wynika, że układ MFC/IMC ma dwa stopnie swobody zarówno w odniesieniu do zmian wartości zadanej, jak i do zakłóceń (śledzenie wartości zadanej i tłumienie zakłóceń realizują dwa regulatory). Ponadto regulator korekcyjny pracuje tylko wtedy, gdy $y_m(s) \neq y(s)$.

Struktury z rys. 1 i 2 różni tylko miejsce lokalizacji modelu i procesu, ale ta zamiana powoduje, że w układzie wg rys. 2 można uzyskać efektywniejsze tłumienie zakłóceń.

Propozycje nowych struktur układów regulacji z modelem

Jeżeli regulator procesu R(s) jest typu PID, to w celu uniknięcia przesterowań od zakłóceń *z* w układzie pokazanym na rys. 2 można zastosować strukturę przedstawioną na rys. 3.

Rys. 3. Układ MFC/IMC z regulatorem PI/PID

W sytuacji przedstawionej na rys. 3 regulator $R_m(s)$ zachowuje się jak PID przy zmianach wielkości regulowanej y (lub zakłóceń z), natomiast jak PI przy zmianach wartości zadanej r.

Transformata odpowiedzi układu ma postać:

Dla $G_{PD}(s) = 0$ oraz $G_{PI}(s) = R_m(s)$ zależność (3) przechodzi w zależność (2).

Regulator PI/PID można zastosować również w innych strukturach opisywanych w tym artykule.

Na rys. 4 przedstawiono schemat blokowy układu 2DOF/IMC [6], w którym w porównaniu ze schematem na rys. 2 są zamienione miejscami węzły sumujący (2) i informacyjny (1) w pętli regulacyjnej procesu.

Odpowiedź układu 2DOF/IMC ma postać:

$$y(s) = \frac{P(s) R_m(s)}{1 + R(s)M(s) + P(s)R_m(s) - P(s)R(s)} r(s) + \frac{1 - R(s)M(s)}{1 + R(s)M(s) + P(s)R_m(s) - P(s)R(s)} z(s)$$
(4)

Z zależności (4) wynika, że śledzenie wartości zadanej i tłumienie zakłóceń zależy od dwóch regulatorów: procesu i modelu. Uzupełniając schemat blokowy z rys. 4 sprzężeniem wyprzedzającym od wartości zadanej o transmitancji $R_{FF}(s)$ (rys. 5), uzyskuje się układ o trzech stopniach swobody dla wartości zadanej i dwóch stopniach swobody względem zakłóceń (2 1/2DOF/IMC).

Rys. 5. Schemat blokowy układu 2 1/2DOF/IMC

$$y(s) = \frac{G_{PI}(s) P(s) (1 + R(s) M(s))}{1 + P(s) (G_{PI}(s) + R(s) + G_{PI}(s) R(s) M(s)) + G_{PD}(s) P(s) (1 + R(s) M(s))} r(s) + \frac{z(s)}{1 + P(s) (G_{PI}(s) + R(s) + G_{PI}(s) R(s) M(s)) + G_{PD}(s) P(s) (1 + R(s) M(s))}$$
(3)

Rys. 4. Schemat blokowy układu 2DOF/IMC

Dla układu z rys. 5 transformata odpowiedzi układu ma postać:

$$y(s) = \frac{P(s)(R_m(s) + R_{FF}(s))}{1 + R(s)M(s) + P(s)R_m(s) - P(s)R(s)}r(s) + \frac{1 - R(s)M(s)}{1 + R(s)M(s) + P(s)R_m(s) - P(s)R(s)}z(s)$$
(5)

Gdy pierwszoplanowym zadaniem URA jest śledzenie wartości zadanej, wtedy można zaproponować strukturę przedstawioną na rys. 6, również z modelem, ale wykorzystującą model całego układu regulacji $M_Z(s)$ (a nie tylko procesu) w torze wartość zadana – wielkość regulowana.

Rys. 6. Schemat blokowy URA z modelem układu regulacji ($R_K(s)$ – regulator korekcyjny)

Dla układu z rys. 6 transformata odpowiedzi układu ma postać:

$$y(s) = \frac{P(s)R(s)(1 - R_{K}(s)M_{Z}(s))}{1 + P(s)R(s) - P(s)R(s)R_{K}(s)}r(s) + \frac{1}{1 + P(s)R(s) - P(s)R(s)R_{K}(s)}z(s)$$
(6)

Układ dysponuje więc dwoma stopniami swobody zarówno pod względem wartości zadanej, jak i zakłóceń, a jego zaletą jest to, że należy określić transmitancję modelu układu regulacji zamiast dwóch transmitancji – modelu procesu i jego regulatora. Wadą tego układu jest to, że tłumienie zakłóceń jest niezależne od przyjętego modelu, podobnie jak zmiany parametrów procesu.

Porównanie właściwości układów

W analizie odpornych układów regulacji wykorzystuje się często tzw. funkcje wrażliwości: wejściowej $S_r(s)$ oraz zakłóceniowej $S_d(s)$ (S_d nazywa się też komplementarną funkcją wrażliwości).

W tabeli 1 zestawiono te funkcje dla rozpatrywanych układów oraz podano zależności między nimi.

Tabela 2 zawiera natomiast dopuszczalne perturbacje Δ dla poszczególnych układów. Przyjęto multiplikatywną postać perturbacji, tj.:

$$P(j\omega) = M(j\omega) [1 + \Delta(j\omega)]$$

gdzie: $P(j\omega)$ – transmitancja widmowa procesu, $M(j\omega)$ – transmitancja widmowa modelu, $\Delta(j\omega)$ – transmitancja widmowa perturbacji.

Perturbacje $\Delta(j\omega)$ są ograniczone i spełniają nierówność:

$$\Delta(j\omega) \leq \Delta < 1$$

gdzie Δ jest znana.

Ograniczone perturbacje spełniają zatem nierówność modułu wektora $|1+\Delta(j\omega)|$

$$1 - \Delta \leq |1 + \Delta(j\omega)| < 1 + \Delta$$

Tabela 1		
Układ wg rys.	S _r	
1	$\frac{R_m P(1+RM)}{(1+R_m M)(1+RP)}$	
2	$\frac{R_m P(1+RM)}{1+P(R_m+R+R_mRM)}$	
3	$\frac{G_{PI}P(1+RM)}{1+P(G_{PI}+R+G_{PI}RM)+G_{PD}P(1+RM)}$	
4	$\frac{R_m P}{1 + RM + PR_m - PR}$	
5	$\frac{P(R_m + R_{FF})}{1 + RM + PR_m - PR}$	
6	$\frac{PR(1-R_KM_Z)}{1+PR-PRR_K}$	

oraz fazy:

$$-A_{\Delta} \le \varphi_{\Delta}(\omega) \le A_{\Delta}$$
$$A_{\Delta} = \operatorname{arctg} \frac{\Delta}{\sqrt{1 - \Delta^2}}$$

W klasycznym układzie regulacji (tzn. jednopętlowym, czyli złożonym z modelu $M(j\omega)$ oraz regulatora $R_m(j\omega)$) przekroczenie dopuszczalnych perturbacji Δ_{KL} (7) oznacza utratę stabilności

$$\Delta_{KL} < \frac{1 + R_m(j\omega)M(j\omega)}{R_m(j\omega)M(j\omega)}$$
(7)

Przykład symulacyjny

Pierwszy przeprowadzony eksperyment symulacyjny (MATLAB®/Simulink®) miał na celu porównanie efektów tłumienia zakłóceń skokowych (działających na wyjściu procesu) w układzie z rys. 4 i w klasycznym układzie regulacji przy zmianach parametrów procesu. Jako kryterium przyjęto całkę z kwadratu błędu (ISE) i całkę z wartości bezwzględnej sygnału błędu (IAE). Przyjęto, że proces nominalny ma transmitancję

$$P(s) = \frac{1}{(3s+1)^3}$$

a model transmitancję

$$M(s) = \frac{e^{-2s}}{6s+1}$$

S _d	Zależności i uwagi
$\frac{1}{1+RP}$	$S_r + S_d = 1 - \frac{(R - R_m)P}{(1 + R_m M)(1 + RP)}$ Tłumienie zakłóceń jest tym lepsze im (R – R _m) jest większe
$\frac{1}{1+P(R_m+R+R_mRM)}$	$S_r = 1 - (1 + RP)S_d$ Wrażliwość zakłóceniowa tej struktury jest mniejsza niż MFC
$\frac{1}{1+P(G_{PI}+R+G_{PI}RM)+G_{PD}P(1+RM)}$	$S_r + S_d = 1 - \frac{P(G_{PD} + R + G_{PD}RM)}{1 + P(G_{PI} + R + G_{PI}RM) + G_{PD}P(1 + RM)}$
$\frac{1-RM}{1+RM+PR_m-PR}$	$S_r + S_d = 1 - \frac{PR}{1 + RM + PR_m - PR}$ Dla $R = \frac{1}{M} S_d = 0$ – układ jest niewrażliwy na zakłócenia; za- chodzi idealne tłumienie zakłóceń
$\frac{1 - RM}{1 + RM + PR_m - PR}$	$S_r + S_d = 1 - \frac{PR - PR_{FF}}{1 + RM + PR_m - PR}$
$\frac{1}{1 + PR - PRR_{K}}$	$S_r + S_d = 1 - \frac{PRR_K M_Z - PRR_K}{1 + PR - PRR_K}$

Tabela 2

Układ wg rys.	Dopuszczalne perturbacje	Zależności i uwagi
1	$\Delta_{MFC} < \left \frac{1 + RM}{R_m M} \right $	$\Delta_{MFC} < \Delta_{KL} \left \frac{1 + RM}{1 + R_m M} \right $
2	$\Delta_{MFC/IMC} < \left \frac{(1+RM)\left(1+R_mM\right)}{R_mM} \right $	$\begin{array}{l} \Delta_{MFC/IMC} \leq \Delta_{KL} \left 1 + RM \right , \text{dopuszczalne perturbacje w MFC/IMC} \\ \text{sa} \left 1 + RM \right \text{razy większe niż w układzie klasycznym} \\ \Delta_{MFC/IMC} \leq \Delta_{MFC} \left 1 + R_m M \right , \text{dopuszczalne perturbacje w MFC/IMC} \\ \text{sa} \left 1 + R_m M \right \text{ razy większe niż w układzie MFC} \end{array}$
3	$\Delta_{MFC/PI_{-}PID} < \left \frac{(1 + RM)(1 + R_{m}M)}{G_{PI}M} \right $ przy czym $R_{m} = G_{PI} + G_{PD}$	$\Delta_{MFC/PI_PID} < \Delta_{KL} \left (1 + RM) \frac{R_m}{G_{PI}} \right $ $\Delta_{MFC/PI_PID} < \Delta_{MFC} \left (1 + R_m M) \frac{R_m}{G_{PI}} \right $ z tych zależności wynika, że dopuszczalne perturbacje są nieco większe niż dla układu z rys. 2
4, 5	$\Delta < \left \frac{1 + R_m M}{(R - R_m)M} \right $	$\Delta < \Delta_{KL} \left \frac{1}{1 - \frac{R}{R_m}} \right $ dopuszczalne perturbacje są większe niż w klasycznym układzie regulacji
6	$\Delta < \left 1 + \frac{1}{M_Z R (1 - R_K)} \right $	

Nastawy regulatora PI/PID w klasycznym układzie regulacji dobrane dla modelu według metody Zieglera-Nicholsa miały następujące wartości: współczynnik wzmocnienia – 2, czas całkowania – 8 s, czas różniczkowania – 1 s (pasożytnicza inercyjna stała czasowa wynosiła 0,1 s). Regulator modelu $R_m(s)$ w układzie z rys. 4 był identyczny jak w układzie klasycznym, a regulator procesu R(s) (rys. 4) był regulatorem proporcjonalnym o wzmocnieniu 0,5. Przebiegi czasowe tego eksperymentu symulacyjnego przedstawiono na rys. 7, a wyznaczone wartości całek kryterialnych w tabeli 3.

Z porównania danych zestawionych w tabeli 3 wynika, że układ z rys. 4 efektywniej tłumi zakłócenia niż układ klasyczny, w przypadku wzrostu współczynnika wzmocnienia procesu, jego stałej czasowej i wystąpienia

Rys. 7. Przebiegi czasowe tłumienia zakłóceń skokowych w układzie MFC/IMC i w układzie klasycznym z regulatorem PI/PID

Kryterium parametry procesu	ISE	IAE	ISE	IAE	ISE	IAE	ISE	IAE	ISE	IAE	ISE	IAE
	nominalne wzmocnienie procesu 2								wzmocnienie		nominalne; nielinio-	
	-			jedna stała cza- sowa procesu 6 s		jedna stała czasowa 2 s		procesu 0,5 stałe czasowe 3 s		wość - nasycenie przed procesem (-1,1; 1,1)		
Przebiegi czasowe	rys. 7a		rys.7b		rys. 7c		rys. 7d		rys. 7e		rys. 7f	
Układ klasyczny	3,27	5,34	2,68	5,56	4,11	9,01	2,12	4,12	4,98	8,00	6,06	11,71
2DOF/IMC (rys. 4)	3,68	6,00	2,43	4,05	3,43	6,09	2,05	3,42	6,50	12,00	5,86	9,72

Tabela 3

silnych nieliniowości, pomimo, że w stanie nominalnym działa gorzej niż układ klasyczny.

Drugi eksperyment symulacyjny miał na celu porównanie efektów tłumienia zakłóceń z rys. 2 i rys. 4. Układ z rys. 4 miał parametry identyczne jak poprzednio. Regulator $R_m(s)$ z rys. 2 miał parametry takie same jak regulator $R_m(s)$ w układzie z rys. 4. Regulator procesu R(s)(rys.2) nastawiono następująco: współczynnik wzmocnienia – 0,3, czas całkowania – 4 s, czas różniczkowania – 1 s (pasożytnicza inercyjna stała czasowa różniczkowania – 0,1 s).

Przebiegi czasowe uzyskane z symulacji przedstawiono na rys. 8, a wyznaczone wartości całek kryterialnych w tabeli 4.

Kryterium parametry procesu	ISE	IAE	ISE	IAE	ISE	IAE	ISE	IAE	ISE	IAE	ISE	IAE	
	nomi	nalne		wzmocnienie procesu 2						wzmocnienie		nominalne; nielinio-	
			-	-	jedna st sowa pro	tała cza- ocesu 6 s	jedna stała czasowa 2 s		procesu 0,5 stałe czasowe 3 s		wość - nasycenie przed procesem (-1,1; 1,1)		
Przebiegi czasowe	rys. 8a		rys. 8b		rys. 8c		rys. 8d		rys. 8e		rys. 8f		
MFC/IMC (rys. 2)	3,77	7,51	3,31	7,32	6,53	14,82	2,39	5,20	5,50	11,84	6,51	15,82	
2DOF/IMC (rys. 4)	3,68	6,00	2,43	4,05	3,43	6,09	2,05	3,42	6,50	12,00	5,86	9,72	

Tabela 4

Podsumowanie

W artykule przedstawiono nowe struktury układów regulacji z modelem oraz porównano ich właściwości z punktu widzenia śledzenia wartości zadanej i tłumienia zakłóceń oraz dopuszczalnych perturbacji procesu.

W wykonanym, przykładowym eksperymencie symulacyjnym porównano działanie (wykorzystując kryteria ISE i IAE) układu MFC/IMC z układem klasycznym (w obu układach zastosowano regulator PI/PID) oraz układu MFC/IMC z układem 2DOF/IMC przy oddziaływaniu skokowych zakłóceń na wyjściu procesu dla różnych jego parametrów.

Najlepszym okazał się układ 2DOF/IMC (rys. 4), który tylko w jednym przypadku (wzmocnienie procesu 0,5, stałe czasowe 3 s) działał gorzej niż układ klasyczny i MFC/IMC (rys. 2). Sugeruje to, że został przekroczony dopuszczalny zakres perturbacji. Układ 2DOF/IMC radzi też sobie najlepiej w porównaniu do innych symulowanych układów po pojawieniu się nieliniowości np. typu nasycenie.

Przedstawione układy można polecić szczególnie do tych procesów, które w czasie eksploatacji różnią się (nawet znacznie) od przyjętego modelu (np. w robotach).

Bibliografia

- A. Bonarini, A. Danieli, M. Danieli, *Adaptive fuzzy* model-following control: A robotic manipulator application, Proc. EUFIT '94, ELITE Foundation, Aachen, Germany, pp. 13 – 18, 1994.
- K.J. Latawiec, *The power of inverse systems in linear and nonlinear modeling and control*, Oficyna Wydawnicza Politechniki Opolskiej, Opole 2004, z. 167.
- 3. M. de la Sen, *Robustly stable model-following control* of uncertain continuous time plant with use of correcting controller, Cybernetics and Systems, Taylor and Francis Ltd., vol. 36, No. 1, pp. 65 – 84, 2005.
- 4. S. Skoczowski, *Robust model following-control with use of a plant model*, Int. J. of System Science, 2001, vol. 32, Nr 12, p. 1413 1427.
- 5. S. Skoczowski, *Deterministyczna identyfikacja i jej wykorzystanie w odpornej regulacji PID temperatury*, Wyd. Uczelniane Politechniki Szczecińskiej, Szczecin 2001.
- 6. S. Skoczowski, R. Osypiuk, K. Pietrusewicz, Odporna regulacja PID o dwóch stopniach swobody, PWN--MIKOM, Warszawa 2006. ■

— REKLAMA 🚽