
PRZEMYSŁOWY INSTYTUT AUTOMATYKI I POMIARÓW
MERA - PIAP

Al. Jerozolimskie 202 02-222 Warszawa Telefon 23-70-81

Zespół 1Jrządzexi, i 'Systemów _Sterowania

Głowny wykonawca

Wykonawcy

Konsultant

Nr zlecenia
S 1341

Zleceniodawca

dr int. Wiesław Stagezak

Efektywne wykorzystanie metody zespołów
-Mamrminimalnycb, do analizy struktury

organizacyjnej przedsiębiorstwa na pod—
stawie wewnętrznego przepływu informacji;
Przygotowanie publikac j i do druku:

Pracę rozpoczęto dnia 9301v15
Kierownik Zespołu

dr i . A. Syryczypiski

zakończono dnia 930729
Z—oa TJ ora
Badawc o j owyc h

dr in t: Jablkowski

Praca zawiera:

stron 2

rysunków

fotografii

tabel

tablip

załączników

Nr rejestr. 6982

Rozdzielnik - ilość egz:

Egz.

Egz. 2,

Egz. 3

Egz. 4

Egz. 5

Egz. 6

BO IETE

Z SS

Z SS

3



Analiza deskryptorowa

Analiza dokumentacyjna

TEORIA GRAPÓW+PODZIAŁ Mn NA PODGRAFY+
ZESPOŁY Maarlinimalne+AMORITMIZACJA+
ZŁOŻONO OiiiICZENICMA

W pracy przytoczono algorytm wyszukiwania

zespołów Max-Minimalnych. Udowodniono jego
prawidłowość , a następnie wykazano, te jest
on klasy 0(n2). Z poprzednich publikacji

autora pracy wynika, t6 omawiany algorytag

daje się do analizy struktury organizacyjnej
przedsiębiorstwa na podstawie wewnętrznego
przepływu informaeji.

Tytuły poprzednich sprawozdań
miromommommem ...... sommemal.

UKD
M ERA-PIAP/TW 331/78 8000



Skomputeryzowanie przedsiębiorstwa, poza wprowadzeniem

niezbędnej infrastruktury sprzętowej Ckomputery i urządzenia

we Y wy, sieć - np. Novell) i programowej Cedytory, bazy

danych, programy natury ewidencyjno - księgowej, itp.)

wymusza zmiany organizacyjne przedsiębiorstwa prowadzące do

uefektywnienia procesu wprowadzania, uaktualniania, przepływu

i wykorzystywania informacji zgromadzonej w centralnej bazie

danych, bądź w rozproszonych bazach danych. Zarówno w

przypadku centralnej bazy danych jak i w przypadku baz

rozproszonych ważnym aspektem jest zadbanie o szybki Ctzw.

krótki czas reakcji systemu), bezkolizyjny dostęp do

niezbędnych informacji.

Czynnikiem decydującym jest tu zarówno ograniczenie ruchu w

sieci w wyniku wyeliminowania przesyłek zbędnych oraz

zredukowania do niezbędnego minimum sięgania przez różne

komórki organizacyjne do tych samych zbiorów danych, jak i

ognaniczenie obciążalności poszczególnych fragmentów bazy

danych.

Wytyczne do realizacji zarysowanego wyżej celu uzyskać można

grupując elementy zbioru wszystkich komórek organizacyjnych

przedsiębiorstwa we wzajemnie rozłączne zespoły,

sig przy tym odpowiednio określonym, wskaźnikiem

podobieństwa informacyjnego. Na przykład w

posługując

wzajemnego

przypadku

realizacji rozproszonego modelu bazy danych każdemu zespołowi

Cewentualnie kilku z nich) przypisana byłaby wewnętrzna,

lokalna baza danych Cpodbaza), umiejscowiona w węźle głównym

konkretnej podsieci przeznaczonej do obsługi komputerów

użytkowanych w danym zespole komórek organizacyjnych. W ten

sposób znaczna część ruchu zamykałaby się w danej podsieci. W

przypadku scentralizowanej bazy danych zestaw wszystkich

informacji można podzielić na poszczególne fragmenty

zorientowane na wykorzystywanie przez poszczególne zespoły

komórek, rozkładając bardziej _równomiernie obciążenie

fragmentów bazy glownej, a w ten sposób redukując czas

reakcji systemu pomimo nie zmniejszonego globalnego ruchu w

sieci.
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W końcu 1991 roku powstała w PIAP koncepcja zastosowania do

rozwiązania ww. zagadnień aparatu metody zespolow Max

minimalnych. Koncepcja ta byka przedmiotem 2 publikacji w

Biuletynie PIAP nr 5 - 157 / 91. Stanowiła ona kontynuację

oryginalnego pomysłu omówionego w artykule: Stańczak W.: -An

Introduction to Max - minimal Sets-. Control and Cybernetics,

Vol. 15, No. 1, 83 - 99.

Jednakże opublikowana w Biuletynie PIAP nr 5 - 157 7 gl

metoda rozwiązywania zagadnienia wyszukiwania zespolow Max -

minimalnych w zasadzie stanowi jedynie dowód konstrukcyjny

algorytmizowalności problemu. Jest ona zbyt mało efektywna

dla zastosowań praktycznych.

W pracy CZalącznik 1) zaproponowano efektywny algorytm

wyznaczania zespołów Max - minimalnych. Jego złożoność

obliczeniowa jest proporcjonalna do n
2
, tzn nadaje się do

praktycznych zastosowań, nawet w przypadku rozwiązywania

problemów o dużej wymiarowości.

Zamieszczony w zalaczniku 1 manuskrypt artykułu zostanie

zgłoszony do druku w periodyku

Cybernetics.

naukowym Control and
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-azącz,,,Z
An 0(n2) algorithm_for finding Max - minimal sets

Wiaslaw Stariczak

Industrial Research Institute for Automation and Measurements

Warszawa, Poland

In [g. 10] the relationships between the generation of Max -

minimal sets and the evaluation of maximum capacities through

a network is shown. A polynomial - type algorithm for solving

the latter problem is proposed, due to the idea introduced by

Hu C3]. The application of this algorithm and some additional

features of Max - minimal sets (derived here) lead to a

modification of the method for generating Max - minimal sets

described in C107. It is shown that this new method needs

0Cn
2
) elem6ntary operations. while the previous one is of the

0(n
4
D type.

f

1. Introdirction

)

The conc pt of Max - minimal sets as introduced in CS] and

redefin d further in C10] can be applied for solving numerous

problem of a graph partitioning type CS, g]. These problems

Iconsist in general, in dividing the set of vertices into

subset 4. such that the aggregate mutual connections between

vertic s (calculated as maxima among appropriate elementary

connections) in a subset are greater than those between the
J)

verti - in the subset and the vertices outside it. A

polYnomial - type algorithm for solving this problem is

propo ed in C10]. It needs OCn
4
D elementary operations, i.e.

Sin a erage it consumes a number proportional to n /inn such

oper tions for determining a single Max - minimal set, since

the ardinality of the class of all Max - minimal sets in a

grap with n vertices does not exceed C1.6 + ln(n -

Thir fact limits the applicability of the method to

of a less dimension and thus reduces Qts

usefulness.

1D]n C8].

the cases

practical

The paper is organized as follows. First, an algorithm for

calculating the maximum capacities through a network (this

problem was first stated by Pollack Cs]) is derived. In

distinction to that described in C10]. it bases on an idea

1



prpposed by Hu [33. cond. it is shown that the new

T 2
algorithm .needs OCn ) elementary arithmetic and/or computer

operations. Third, the definition of Max - minimal sets is

called and some their features are reminded. Fourth. a 
new

cj"iaracteristics of Max - minimal sets is proposed. It

requires a'lesser computational effort to check whether a

norliempty proper subset of a given vertex - set constitutes a

M - minimal set than those stated previously in ES, 93.

T1at.. leads to a new algorithm for finding Max - minimal sets.

I s basic idea is, in fact, the same as for the algorithm

considered in C9, 103, but the new features derived 
here give

possibility to delete and/or redefine several steps 
of the

in decreasingbrevious algorithm, which results the

complexity as it will be seen in Section 4. Fifth. the

remaining details of the implementation for the new 
algorithm

i are described and there is proved that it is of type 0Cn
2
D.

2. Maximum capacities through a graph

Let X, 'Xl = n > 1, be a finite set and w be a mapping

symmetric with respect to its arguments with the domain (4.:x,

y) : x, y e X) and with the range consisting of the set of

real numbers and a dummy value denoted throughout the paper

by d. The latter is assumed to possess the following

properties: max (d, a> = max-Cd, d) = d) = d and min.Cd,

a) = a for any real a. We consider a weighted graph (G. w)

defined by the complete undirected graph G = CX. E) without

self - loops Cwe assume that the reader is familiar with the

basic notions of the classic graph theory as described, e.g.,

in El. 53, and thus we do not remind appropriate definitions)

having X as its vertex - set and E = (-Cx, y) : x. y e X, x

y> as its edge set, and the above mentioned function w,

which describes weights attached to edges".

The Max - capacity V(C) of a cut - set C is understood by

means of the formula VCC) = max(wCx, y) : (x, y) e C) E9.

103. Moreover. let P = CU, Epp, U c X, !Ul > 1, be a Csimple)

path in G. The capacity WCP) of P is defined as WCP)

min-Cu(x, y) : y) e EF,) E3, 6, 9, 103. We refer to any cut

set C
* 

= CCx; y) separating two distinct vertices x and y

(i.e such cut - set which deletion breaks all paths joining



these vertices) as to Max - minimal cut - set if its Max -

capacity attains the smallest value among all cut - sets in G

separating the indicated x and y [9, 10]. Its value is

denoted here by t and called the Cx. yDth terminal Max -xy
capacity, x. y e X, x y. For convenience we additionally

assume t = d for x = y e X, and the square matrix Et ] ofxy xy
order n is known as the terminal Max - capacity matrix for

CG, w) [9, 10). The terminal Max - capacity matrix for any

given (G, w) can be realized by some weighted tree C 
TR wTRD'

TR = CX, 
ETR2 

Csee Theorem 1 in [9]) and by some weighted

path CP
R' 

w
PR
D, P

R 
= CX, E

PR
D Csee Theorem 2 in [Gl), which

means that each Cx, y)th terminal Max - capacity has the same

value in CG, w) as for the mentioned tree and path Cso -

called the tree and 7 or the path realizing the terminal Max

- capacity matrix of (G, w). respectively). The importance of

paths realizing terminal Max - capacity matrices in the

theory of Max - minimal sets becomes obvious in the light of

[9, 10] and is confirmed in Section 3.

The maximum capacity W through a weighted graph CG, w)xy
between its distinct vertices x and y is the greatest

capacity among all paths in CG, w) joining these x and y [3,

5, 103. If we additionally define W d for each x = y e X,xy
then we obtain Csee Theorem 8 in [10]. which is, in fact a

black carbon copy of Theorem 1 in Section 8.7.2 of [1]) that

the simple relation

Ł = W , for any x, y e X, Cl)xy xy
connects maximum capacities through CG, w) and terminal Max -

capacities for (G, w). Thus, since the method for the

construction of path realizing a given terminal Max -

capacity matrix is known Csee the PRTM procedure in [103,

being of type 0Cn
2
DD and is rather efficient, then according

to Cl), it remains to pay our attention to derive a procedure

which finds W 's and uses to do it a less numbers ofxy
operations than 0Cn

3
) required for the EMPC procedure

described in [10]. We begin with some modification of the

implementation proposed by Kevin and Whitney [4] for the

algorithm of Prim [7] and Dijkstra [2], which generates
shortest spanning trees:



5. For each

6. If Y = O, then FINISH the STMC.

7. Evaluate c := max(cCy) : y e Y>.

8. Find any z e Y such that cCz) = c.

9. Set x := a(z).

10. Update ET := T U ((x, z)-).

11. t := c and t := c.
xz zx

12. LCz) := LC ) + 1; LCx) = LCx) + 1.

13. ACLCz)) x; AXCLCx)) :

Spanning Tree with Maximum Capacities CSTMCD

1. For each x e X set L(x) := O.

2. Set

3. Take any x e X.

4. Set Y := X - <x).

Y set aCyD := x and cCv) := wCx, y).Y €

= Z.

14. Y := Y - <z>.

15. Define U := Y.

16. Examine whether U = O. If so, then pass to Step 6.

17. Take any y e U.

18. Check whether cCy) > wCz, y). If so, then go to Step 20.

19. Sat cCy) := wCz, y) and aCy) := z.

20. Update U := U - <y> and return to Step 16.

The STMC realizes the concept sketched by Hu in [3]. Let us

now consider this procedure with more insight. The finiteness

of X ensures that in each passage through Steps 7 and 8 some

Z e Y is chosen CY * e and Y X due to Steps 4, 6 and 14D.

Therefore, Steps 14 and 6 yield that the STMC terminates when

the main iteration (consisting, in fact, of Steps 6 - 20) was

performed exactly n - 1 times.

Due to Steps 7, 8 and the second part of Step 5, the relation

cCo) 5. t is obvious. Let us now suppose thatxz
c(z) < t , C2D

xz
which is equivalent to the existence of a path in CG, w), say

P, P = CU, E), x, z e U, joining x and z, such that WP xz
WCP) > cCz), according to Cl). On the other hand. since STMC

is applied to a complete graph, then in each its main

iteration the cut - set 
CY,X-Y 

corresponding to the partition

of X into Y and X - Y is handled. Moreover, VCC
Y,X-Y3 

=

according to Steps 7, 5 and 15 - 20, and due to the

4



definition of Max - capacity. The evident relation C n
Y,X-Y

E e leads to cCz) W = WCPD, by the definition of WCP).
P x2
Combining the last inequality with Cl), we get cCzD t ,

xz
which contradict (2) and proves the validity of Step 11,

(see also Steps 7 and 8D.

The above remarks, the

the fact that the STMC

shortest spanning tree

summarized as follows.

inspection of Steps 1. 12 and 13, and

is an evident modification of the

procedure stated in [2, 4, 7] can be

Lemma 1. The STMC generates the Cspanning) tree T = CX, ETD

in OCnD iterations and the weights tx0 (<x. z> e ETD are the

Cx. zDth terminal Max capacities in CG, wD, indeed.

Moreover, for each x E X we have L.CxD > 0, and, AxCiD, i = 1,

LCxD, is a list of vertices adjacent to (i.e. joined

by an edge with) x in T.

From Steps 5 and 14 - 20 it follows that the values of aCyD's

used in Step 9 are taken from X - Y. Therefore in each main

iteration the only edge being adjoined to E
T 

say (x, z).

(Step 10) connects a member of X - Y with an element of Y

(Step 8). Since x is taken into account by the STMC earlier

than z, then it is convenient to say that x is older than z

and/or that z is younger then x. These remarks yield the

following property of STMC, which will be used further in

this section.

Corollary 1, Let <x, z) e E
T" 

A
x
C1) = o and ACl) = x if and

only if either x or z is the starting vertex (i.e. chosen in

Step 3) of SIMC, and the other is obtained in the first main

iteration. Moreover, the relations A = x and A
x
Cl) # z

are equivalent to the fact that x is older than z.

Any two distinct vertices of a tree are joined in it by a

single path and no more such paths exist in that tree. Let It.

V e X. .11 # v. and we consider a path P = CU, y joining them

in T = CX, ETD generated by the STMC. From the discussion

above Lemma 1 it follows that each edge <x, z) e E
P

corresponds to some cut - set 
CY X-Y 

in (G, w) such that x e
, 

Y and z e X - Y. Without any loss of generality we can assume



that u e Y. The additional supposition v e Y yields the

existence of a path. say P' = CU', E'), joining u and v in a

subtree T' = CY, Ey of T, E'T c ET. Since E' c E'T and <x,

z) e E'T, then P' and P are distinct, i.e. we get a

contradiction. Therefore. we have u e X - Y. In other words,

the considered C ,s
Y,X-Y

implies the inequality

separate u and v in CG, w). That

t LS W
*
CP), C3)

uv
where the asterisk indicates that the capacity of P' is

evaluated in T instead of in CG, w).

On the other hand, P is also a path joining u and v in CG,

w), since the latter is a complete graph. Thus, CCu; v) n E 
P

e for any cut - set CCu; v) separating u and v in CG, w),

i.e. WCP) VCCCu; vD3 by definitions of Max - capacity and

path's capacity. Moreover, Steps 5 and 15 - ap imply that t

= wCx, z) for any (x, z) e ET, which yields W CFO = WCP).

Thus, by the definition of terminal Max - capacity, we get

W
w
CP) LS t . Combining the latter with (3), we have tu

v• 
uv

W
*
CP). Therefore, we obtain

X2

Theorem 1. The STMC produces a tree realizing the terminal

Max - capacity matrix of CG, w).

Thus, instead of constructing the terminal Max - capacity

matrix directly, i.e. on a basis of CG, w), we can do it by

using T = CX, ETD, previously obtained with the aid of STMC.

Let us now consider the following procedure applied to T

CX, ETD, LCxD's,, AxCp7's, p = 1, 2,..., LCx), and t 's,
xy

where x, y e X, obtained as an output of STMC described

above:

Maximum Capacities through a Graph CMCGD

1. For each x e X set t := d Ca dummy value), set h(x) :xx
O and set 1(x) := LCx).

2. k := 0; i := 1.

3. Take any x e X.

4. Set sC1) := x.

5. Take y := Ax(1(x)) (choosing a vertex adjacent to x).

6. Update /(x) := 1(x) - 1.

6



7. Check whether hCy) O. If so (i.e. y was reached

previously), then pass to Step 8. Otherwise. go to Step

10

8. If UN?) = O, then return to Step 5.

9. Set x := y and return to Step 5.

10. i := i + 1; k : = k + 1.

11. Set sC i) := y and hCy) := i.

12. j := J .

13. Set u = min<tsci)x,t ).xy

14. t
ysCJD 

:= u and tscj := U.)y

15. j := j - 1.

16. If j = O, then pass to Step 17. Otherwise, return to Step

13.

17. If i := 1)(1 , then FINISH the MCG.

18. Set x := y and return to Step 5.

Steps 1 - 4 constitute an introductory phase.

iteration consists of Steps 5 - 18. Let us assume

nów in Step 5. If we reach it for the first time,

The (main)

that we are

then 1(x) =

LCx) > O and A
x
Cp), p = 1, 2,... ,LCx), is a complete list of

vertices adjacent to x in T = CX, ETD, due to Lemma 1, where

/(x) indicates the current value of LCx). Otherwise we can

arrive at Step 5 from either Step 18 or from Steps 8 and 9.

Let us now suppose that LCx) = O during the passage to Step

5, which is equivalent to the situation in which all the

vertices adjacent to x in T were previously visited from x.

If we return to Step 5 from Step 18, then this event must be

recently preceded by performing Steps 5 - 7, and 10 - 17,

i.e. the condition hCyold 
= O (where x = x

new = Yold' by

Step 18) must be satisfied in Step 7. It means that x = xnew

was not previously visited, i.e. 1(x) > 0, due to Lemma 1,

which contradicts our supposition.

If we return to Step 5 from Step 9, then /Cv-old) 
O due

= 
old 

according to Step 9, and we getStep 8, x = x
new '

same result as in the previous case.

the

Let us now assume that we return to Step 5 from Step 8. Our

supposition yields Ad ) = y (see Steps 5 - 6). First we

consider the second case handled in Corollary 1, in which we

7
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have A Cl) x, and A Cp) = x, for some index
Y Y

< p LCy). But it implies that previously the

to x .has occured Csince, othenwise, /Cy) = p >

p such that 1

passage from y

1) either via

Step g or via Step 18. In both the cases we get 1Cynew)

LCx
old

D = p - 1 > O, which contradicts the assumption that we

return to Step 5 from Step 8. It remains to discuss the case

A
x
C1D = y and A C1) = x. The relation /Cy) = O Csince we

return to Step 5 from Step 8) implies that other vertices

have been previously visited LCy) times from v, and no

passage via x occurred, due to Lemma 1.

Let us now discuss some specific situations. First, we assume

that LCz) > 1 and each u = A
z
Ci), i = E, 3,..., LCzD, is a

pendant vertex Ci.e. of degree one) in T, z e X - y>,

where x and y are as above. Corollary 1 implies that A
u
C1D =

z for any mentioned u. If in some iteration of MCG we visit

z, then it is evident that we pass to A
z
CLCz)), return to z,

pass to A
z
CLCz) - 1D), return to z again, pass to A

z
CLCz)

2DD, etc., until we arrive at z and get /Co) = 1. The same,

obviously, holds for z = y.

Let us now suppose that there exists a path P = CU, EFD in T,

such that U c X - y>, some u-= uo e U is pendant in T.

and other u's have degree two in T. Obviously, P is a subpath

of some path P' passing via x and y in T. By kCuD, u e U, we

denote the number of vertices in P' whose separate y and u.

It is evident that u is younger if and only if kCu) is

greater. The inspection of MCG shows that if we start with

some z = u e U, then first we visit all younger u's, if

exist, and thus we return to older ones.

By deleting the edge -Cx, y) from T = CX. EiD we obtain two

subtrees. namely T = CX E D and T = CX , E D, where X
x 

n
xY Y x x

X = O, X
x 
U X = X, x X

x 
and y e X . Thus, combining the •

Y
two specific cases considered above, we conclude that each

vertex of X has been visited at least once before the LCyDth
Y

return to y. Therefore, Step 10 ensures that i = IX I. The
Y

same construction can be applied to Tx, but before we return

for the LCx)th time to x, the condition i = IXI = IX I IX 1Y
has occurred, i.e. the performance of MCG has finished, due

to Step 17. Thus, in this case the condition /(x) = O does



not hold in Step 5.

t

Summarizing, in each CmainD iteration of MCG the direction of

passage is well - defined. Moreover t 's used in Step 13
t xy

ccirrespond to edges of T, because y = AxCiCxDD Csee Step 5D.

T ey were previously obtained in STMC. The values of tscj)x's

a e calculated in the preceding iterations Csee Steps 1, 4

arlri 10 - 16D. Therefore, the substitution in Step 13 is well

- defined. Moreover, it is consistent with the definition of

ath's capacity. By Steps 4, 10 - 11 and 17 all the sCiD's, i

I
1, 2,... , n = IXI are evaluated. Moreover, Steps 7 - g

and 11 ensure that the inequality i # i' is equivalent to
(
sCiD # sCi'D, Let us take r and q, 1 ..5 r, q 5_ n, such that U

i= sCrD and v = sCqD, u, v € X. If u = u, then t
uu 

is

/evaluated in Step 1. If u # v, then without any loss of

' generality we can suppose that r < q. Thus the value of t =
uv

J = r.Ł is determined
uu
Finally,

in Steps 12 - 16 for = and

taking into account the stopping rule contained in

Steps 2, 10 and 17 and using Theorem 1, we get

Theorem 2. The MCG applied to the results of STMC generates

the terminal Max - capacity matrix of CG, wD in a finite

number of iterations.

Now, it remains to estimate the complexity of STMC and MCG.

Steps 7 and 8 of STMC can be realized simultaneously and

require IYI - 1 comparisons in each main iteration. In Steps

15 - 20 we perform IYI comparisons and at most 2131

substitutions in each main iteration. Therefore, due to Lemma

1, Steps 7, 8 and 15 - 20 need 0Cn
2
D operations for the whole

STMC. Since in Steps 1 and 5 we perform 3n - 2 substitutions

only once, and the number of operations in Steps 2 - 4, 6 and

g - 14 does not depend on n and'or IYI, then the STMC is of

type OCn
2
D.

Steps 4, 5 and 6 of MCG ensure that from any vertex of X, say

x. the vertites adjacent to it in T are visited at most LCxD

times Cdue to the stopping rule realized by Steps 2, 10, and

17D, where LCxD is, in fact, the degree of x in T. Since the

sum of degrees of vertices in the tree T equals 2Cn 1D,

then visits to vertices of T are performed OCnD times. The

g



control of MCG consists of the second substitution in Step 1,

Steps 2 - 11 and 17 - 18. Any of Steps 2 - 11 and 17 - 18

requires a constant number of simple arithmetic and/or

elementary computer operations, which is independent of n.

Since the mentioned steps Cat least some of them) are

executed during each visit to a vertex and the second

substitution in Step 1 is performed n times, then the control

of MCG consumes O(n) operations. By the first substitution in

Step 1 and by Steps 12 - 16 the appropriate entries of the

terminal Max - capacity matrix are evaluated. The former

costs n substitutions. Steps 13 - 16 consume two comparisons,

three substitutions and a single subtraction per each pair

t , t , u, v e X, u u, and Step 12 needs only one
uv vu
substitution for a whole loop performed during each visit to

a vertex. Since each mentioned pair tut), tvu is considered

only once (due to Steps 7 - gD, then the part of MCG directly

connected with the evaluation of terminal Max - capacity

matrix is of type 0(n
2
D, and the same holds for the whole

MCG.

Summarizing, the solution to the problem of maximum

capacities through a graph (and thus the evaluation of

terminal Max - capacity matrix (see Cl)) with the aid of STMC

and further by applying MCG to the results given by the

former needs 0(n
2
) elementary operations. For comparison,

EMPC proposed in C103 produces the same output using 0(n
3
)

such operations.

3. Max - minimal sets and paths realizing terminal Max

capacity matrices

We begin with a convenient generalization of the definition

of Max - minimal sets (introduced in C83 for complete graphs

with non - negative edge weights and extended for any real

weights in [10]). Namely, let F = CX, EFD be a subgraph of G

= CX, ED described in Section 2, and w = w , i.e. a
CF)

restriction of w to the domain EF. For nonempty and disjoint

subsets A and B of X we define

m CA, B) = max(min{wCx, y) : x, y e X, x y>,
CF.)

wcF)Cx, y) : x e A, y e B> C4)

10
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A nonempty proper subset S of X is called a Max - minimal set

in CF, wD if the inequality 
mCFDCR' S - R) mCFDCR' X - S)

holds for each R c S such that 0 R S.

It can be easily verified that mCA, B) = m
CGD

CA, BD =

max<wCx. yD : x e A, y e B>, which yields that for F = G the

above definition of Max - minimal sets is consistent with

that given in [8, 9, 10]. Moreover, in the further discussion

we need the following features of Max - minimal sets (compare

with Theorem 1 in [8]. Proposition 2 in [9] and Theorem 4 in

[9], respectivel-y).

Proposition 1. S is a Max - minimal set in CG, wD, if and

only if either S = <x>, x e X, or S is a union of pairwise

disjoint Max - minimal sets in (G. w), say Sl, S2,... 
„5k"

 and

the condition

mCZ, X-ZD <min<mC.S.. X- S.D : i

is satisfied for Z = S and does not hold

where J c <1, 2, k). , 1 < J < k.

= 1, 2,... , h> C5D

for each Z = U
ieJ

Proposition 2. If S is a Max"- minimal set in CG, wD. then

the elements of S are consealtive vertices (not separated by

any element. of X - SD in ea h path realizing the terminal Max

- capacity matrix of CG, wD

Proposition 3. Let S be a ubset of X such that 1 < ISI <

I XI. Then S is a Max - minimal set in CO, wD if and only if

the inequality

t t CaD
xo/ xy

holds for each pair of ditinct x, z e S and any y e X - S.

Let CG, 1-6b be defined analogously as CG, wD in Section 2, but

with the only distinctioln that wCx, yD's are replaced by

t 's, x, y e X. Moreover, throughout this section we alsoxy ".;
assume that CP, .1.1,0, P = CX, E), indicates a path realizing

P
the terminal Max - capacity matrix of CG. wD. Evidently, P is

N _ --a subgraph of G, i.e. w - w (analogously, below we also
CP)

rawrite m instead of 
CPD

D. Thus, Theorem 3 of [9] can be

rewritten as follows.

Proposition 4. If S is a Max - minimal set in CG. wD, then S

11

/45



is also a Max - minimal set in any CP, w).

Now, we are in a positith to prove the main result of this

section and the whole paper.

Theorem 3. S is a Max minimal set in a path realizing the

terminal Max - capacitly matrix of CG, w) if and only if it is

also a Max - minimal 49.t, in CG, w).

Proof. Let S be a Max minimal set in CP, re). We can

restrict our considdiations to the case ISI > 1 only, since

for ISI = 1 the assertion
r

definition of Max -

we get

is obvious. By Proposition 2, the

set and the description of CG,

67.1ĆS, X - SD = max(t , t ), C7)
X
h-1

X
h 

x
R+151-1

x
k+I5I

if only s n <xl, x
n 

= e, where for convenience, one of two

possible orientati6ns for the path P is assumed, and the

subscripts assignęd to vertices indicate the positions of

vertices in P with respect to this orientation. According to

Proposition 1, thevalue ofrk.) mCS, X - SD should be compared

with mCR, X - RD's for nonempty proper subsets R of S such
tr--/

that R's are also Max - minimal sets in CP, w). Therefore,

using Proposition 2 again, we obtain

mCR, X R) = max<t , t
X. X. x .x .

1.-1 3+1

C 8)

for the R's as mentioned above, where i, j = k, k + 1,...,h +

1.5 1 - 1. Combining C7) and (8) with C5D for Z = S. we obtain
max<t , t

X
h-1

X
h 

x
k+151-1

x
k-1- 15.(1$

< t
xu-lxu

C g)

for any u = 1, h + h + IS1 - 2, since, in parti-

cular IRI = 1. The inequality (G) immediately implies (6) for

each pair of distinct x, z e S and any y X - S. Thus, S is

Max - minimal set in (G, w), due to Proposition 3.

Since S is a Max - minimal set in CP, w), then ISI < IXI , by
definition. Therefore, 0 S IS
,x71). 1 = 1, then either t

X, x
h-1 k

replaced by min-Ct x, y e X,

the rest of arguing remains in force.

n <x . x >I 5_ 1. If IS n <x ,
1 n 1

or t should be
x
k+ISI-1

x
h+ISI

x y> in C7D and C9), and

tt 12



4

I
Thus, forl

o
accomplishingteh whole proof it suffices to apply

Propqsition 4. Q. E. D.
if
;

t
The use of Theorem 3 instead of Proposition 1 gives ai

possibility to decrease the computational effort required for

checking whether any set is a Max - minimal set in CG, wD.

Namely, the approach described in Section 6 of C10] yields

the execution of 2Cn - rD - 1 comparisons to compute the

value of mCQ, X - Q (see Steps 18 - 20 of SP in E1OlD for a

/single Q, IQI = r >1 1, which consists of consecutive vertices

,/in CP, rwD and, preliminarily, 0(n
2
D comparisons to obtain

mC(x), X - 00-D's C tep 3 of SP in C101D, in addition. In

rycontrast, C7D and OD imply that to calculate mCQ, X - QD

Cand, in particular 
N

, mC(x), X - (x)DD it suffices to perform

only one such operation. That Proves the practical importance

of Theorem 3. In t.he new version of the algorithm for finding
Max - minimal sets, which is described in Section 4 in

details, we use some consequence of Theorem 3 and

Propositions 1 and 2 instead of Theorem 3 itself. Namely

Corollary S i,s a Max - minimal set in CG, 10, if and only

if either S.= (x), x e X, or S is constituted by consecutive

vertices in CP, ł:JD and it is a union of pairwise disjoint Max

- minimal sets in CG, wD, say Sl, 
2"• „5k" 

such that the

condition

mCZ, X ZD < :rnin<m.CS., X - S.D = 1, 2,..., k) (10)

is satisfied ‚for Z = S and does not hold for each Z =
te_.7

where J c (1, , 1 < JI < k, and the latter form of

Z also consists of consecutive vertices in CP, '74;5.

Finally, we mention a next feature of Max, - minimal sets in

CG, wD (see Lemma 2 in [8]D, which can be easily extended for

the case of Max - minimal sets in CP, 10 by means of Theorem

3.

Proposition 5. Two Max - minimal sets in CP, wD are either

disjoint or one of them includes the other.

Proposition 5 is used in Section 4 for showing the validity

of the new algorithm.

13



4. The new algorithm

The idea of the new algorithm is 
similar to the previous one

described in [10). Namely, basing 
on any path realizing the

terminal Max - capacity matrix for a given CG, u0 the

successive r - tuples, r = 2, 
n - 1, of consecutive

vertices -are examined whether 
they constitute a Max - minimal

set. If the result of examination 
is positive, then, due to

Proposition 5, the considered r - 
tuple is merged into a

single vertóx, the resultant self 
- loops are deleted, and

the above mentioned, way of 
searching is appli.ed te the r -

The performance begins for
tuples of this updated path, etc.

r = 2, and.to satisfy the 
conditions given in Corollary 2 no

.Cr + 1) - tuples are considered 
before finishing the'complete

inspection of r - tuples.

Let us denote

h
u 
= t
XX

where the labelling of vertices is consistent with their

ordering in a path realizing any terminal Max - capacity

matrix, say in CP, /) Cthis 
assumption holds throughout this

section), and-

h = max-Ct : x, y e X, x y),
max xy

h . = min{ t : x, y E X, X y>.
min xy

Now, we consider the following 
procedure:

Cli)

C12)

Searching Max - minimal Sets CSMS)

1. Each (x), x e X, is a Max - 
minimal set in CG, Cand in

ea-1
CP, w)).

2. h := h . h := h .
• O min n

3. Set CARDCID := 1, PREDCu) := u - 
1, SUCCCu) := u + 1,

NEXTCLD := u + 1 and aCu) := max-Chu-1' 
h
u
›, for u = 1.

2„.., n = IXI.

4. r := 2.

5. u := 1.

6. c := SUCCCu).

7. If c = n + 1, then go to Step 15.

8. R := c + CARE(c); j := 0.



9.

10.

11.

h : = h.
c'

• a : = aCu).

Set b := max<h
PRE 

h)- and aCu) := min.Ca. aCc)›.
DC2L)

Check whether b < aCu). If so Ci. e. the considered set

a Max - minimal set in CG, 10). then pass to Step

Otherwise aCu) := a.

is

17.

12. SUCCCu) :=k.

13. If j > 0, then go to Step 21.

14. Set u := NEXTCu) and return to Step 6.

15. r := r + 1.

16. If r < n, then return to Step 5. Otherwise, S.i.OP.

17. The considered Ck - u) - tupie -Cxu, x u+1,...

Max - minimal set in CG. w).

, xk-1). is a

18. Set h := h and CARDCO :=k - u.

19. Update j := j + 1 and set a := h
PREDCu).

20. BEGC j) : = u; := r.

21. Set u := PRED(u).

22. If u = 0, then pass to Step 25.

23. i := -1.

24. If i X 0, then return to Step 10.

25. v := BEGC j).

26. PREDC k) : = v; NEXTC = k.

27. If u = 0, the return to Step 5.

28. := r.

29. NEXTC.u.) := v.

30. i := - 1.

31. If i x 0, then pass to Step 34.

32. Set NE)CTCu..) = k.

33. If k = r + 1, then go to Step 15. Otherwise,

14.

pass to Step

34. u := PREDC-0).

35. NEXTC v) : =

36.  S t v := u and return to Step 30.

(J
Moreover, we assume that the SMS is applied to the CP, w). If

nJ
for no r - tupie consisting of consecutive vertices in CP. w)

the condi tic5n in Step 11 hold then, obviously, only

preliminary Steps 1 - 4 and further Steps 5 - 16 in a loop

are performed. It is evident that in such a case first all

the pairs (x,, xt+1)- , for i = 1, 2.... , n - 1. further all

the triples {x., 3.±1, x.±) , j = 1, 2,... , n - 2, and, in

general, all the r - tuples (xu, x 
11+1 

. . . , xu+r-1), u = 1,

- 6.- '19



2,..., n - r + 1, are inspected, r = 2, 3,..., 
n - 1.

Let us now suppose that the currently 
handled r - tupie has

the form Z = <xu
, xu+1'''

., xu+r-1
›, and that no visit to

Step 17 has been previously per-formed. The value of aCuD

corresponds to the right - hand side of (10), 
and b equals

(o
mCZ, X - ZD, due to (7). In other words, the condition

checked in Step 11 is the same as in (10). 
Moreover, due to

our supposition, no set like ‹xu, xu+1,..., xu+1-1
›, L = 2,

3,..., r - 1, is a Max - minimal set. Thus, due 
to Corollary

2, the satisfaction or violation of the 
condition in Step 11

is equivalent to the fact that Z is or is not a 
Max - minimal

set. The latter situation was considered above. 
Let us now

pay our attention to the case in which Z is a Max 
- minimal

set, indeed. According to Proposition 5 no union of any

nonempty proper subset of Z and a subset of X - Z 
constitute

a Max - minimal set. Therefore, it seems that Z 
can be merged

into a single vertex .Cconsider Steps 17 - 20

a constant j 1) without omitting any Max -

the further performance of SMC. It implies

and 25 - 36 for

minimal set in

that the next

examined r - tupie, if exists, should begin with 
xu+r, which

is realized by Step 32 (see also the parts of 
Steps 2, 8 and

18 concerning CARD(u) and Step 67.

Let us now additionally suppose that u r, we started to

inspect the Cr + 1) - tuples,

tupie has the form <x , xu-r+1'.
.., xu

›, and that
u-r

to Step 17 has been previously performed for Cr

the currently handled Cr + 1) -

no visit

1) -

tuples. This <x , x '
. x

u-r  u

stands for the previously considered

(pseudo) Cr + 1) - tupie corresponds

Itxu-r+1"—' xu' xu+1'''''xu+r-1).

sets of type Z
L 

= -Cx
u-r+L' 

xu-r+L+1"— 
, 

u u+1 x , x 
'''''

x ), L = 1, 2,..., r - 1, are not examined at all. To
u+r-1 
avoid this situation Steps 19 - 36 are introduced. For 

j = 1

they handle first Zr-1' 
second Zr_2,..., and finally Z1,

since Zr-1 
c Z

r-2
c..... c Z

1 
(compare with Corollary 2 and

Proposition 5). If any new Max - minimal set is found, say

Z
L 

then u is replaced by u + r - L. etc., and the

modification realized by Steps 17 - 27 and 10 - 13 starts

again and again until either the first vertex in CP, (;1;‚) is

-46%-

contains x
u
, where x

u

Z, i.e. in fact, this

to the 2r - tupie <xu-r

means that, e.g., all



backtracked (i.e. u = O, see Step 22) or a sequence nCs, r

1) = Cx
s
, x

s+1".
., x

s+r-2
D of r - 1 consecutive vertices in

CP, w) is found such that they do not belong to a Max

minimal set and are the close predecessors of the last Max

minimal set, say constructed in this modification.
•••••••

Obviously, Z = (xs+r-1'
, xx

s+r"..

From Proposition 5 it follows that by applying the above

mentioned modification, listing the Max - minimal sets

obtained in it and, finally, by merging Z into a single

vertex, we do not lose any Max - minimal set in CP, '14)). On

the other hand, Corollary 2 requires further handling of sets

whose contain Z and any part of nCs, r - 1) in the similar

order as described before. Namely, if we denote Z1,qt 
= {x

s+C

x
s+r 

x
u+r-1' 

xu+r,....

r, and 1 =0. 1,..., r - 2,

xs+1+1,....

x
u+r+9

›, q 0, 1,..., n - u -

then first Z -7 
''''' 

Z should be examined,
r-2,0' `r-3,0 0,0

etc. Such arrangement of inspectionfurther Z
r-2,1 " ." Z0,1 * 

is realizing by reversing the NEXTC.D's labels attached to

the elements of nCs, r - 1) (Steps 25 - 36) and by assigning

to them the same successor :51JCCC.) in Step 12. these remarks

and the use of Theorem 3 lead to:

Theorem 4. If the sequence Cxu 
: u = 1, 2,..., n) gives the

ordering of vertices in a path realizing the terminal Max -

capacity matrix of (G, w), and hu
. h

min
, h are as in C11)

max

and (12), respectively, then the SMS finds all Max - minimal

sets in CG, w).

Therefore, the new algorithm for finding Max - minimal sets

can be defined as follows

1. Execute the STMC

2. Perform the MCG

3. Realize the PRTNM

4. Execute the SMS.

where PRTM1 denotes the following modification of the PRMT

described in [10]:

17



Procedure PRTM1

1. Set A := X.

2. p := 1; q= O; f := O.

3. If IAI = 1, then go to Step 12.

4. Take any x e A.

5. Set t
A 
:= mint : u e A -

xu
:=6. Iff=0, thensethmill := tA and h

max
7. f := 1.

8. Construct H := ‹y : t
x-Y 

= tA, y e A).

g. p := p + 1.

10. A :.= H; h := LA.
P P

11. A := A - H and return to Step 3.

L
A
.

12. g :=q + 1.

13. Set x := x, where {x) = A.

14. If g = n, then FINISH the PRTM1.

15. Set A := A and set h := h ., 
P q P

16. Modify h := maxCh h modify
max max '

h ›.

h ,
min

minCh • ,
min

17. Update p := p - 1 and return to Step 3.

Obviously, the PRTM1 also produces a path realizing the

terminal Max - capacity matrix and, additionally, evaluates

hu's, h. . .and h as defined in C11) and C12), respectively
min max

Csee Theorem g in [1.07). Moreover, similarly as in Section 6

of C103, it can be proved that the PRTM1 is of type 0(n
2
).

It remains to estimate the complexity of SMS, and further, of

the whole new algorithm. The remarks, preceding Theorem 4

yield that in the extreme case the SMS handles all the r

tuples, r = 2, 3,..., n - 1, of consecutive elements in a

path realizing the terminal Max - capacity matrix exactly

once in Steps 4 - 16 and Steps 17 - 27 and 10 - 13 Cthe so

called modification consisting of Steps 17 - 27 and 10 - 13

tuples only), i.e. OCn
2
)avoids the disregard of some r

subsets of X. Each of Steps 4

elementary operations independent of n and of r. Thus, their

total numerical complexity is proportional to n
2
. The

iteration loop constituted by Steps 28 - 36 is performed for

some specific r - tuples Csee the so - called modification

considered above Theorem 4) only and, moreover, exactly once

27 requires a number of

18 4z,



for any of these r - tuples, i.e. it is executed at 
most n

2

times. Each of Steps 28 - 36 is realized by a constant

(independent of n and of r) number of elementary operations.

Thus they need 0Cn
2
D such operations in total. The complexity

of Steps 1 - 4 is, obviously, of type 0(m). Therefore, the

whole SMS requires 445)(n
2
D elementary operations. Since the

complexities of STMC, MCG and PRMT1 are at most of type

OCOD, then the whole new algorithm for finding Max - minimal

sets is of type 0(n
2
)
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