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Skomputeryzowanie przedsiebiorstwa, poza wprowadzeniem
niezbednej infrastruktury sprzetowej (komputery i urzadzenia
we / wy, sied¢ - np. Novelld i programowej Cedytory, bazy
danych, programy natury ewidencyjno - ksiegowe]j, itp.>
wymusza zmiany organizacyjne przedsiebiorstwa prowadzace do
uefektywnienia procesu wprowadzania, uaktualniania, przeptywu
i wykorzystywanié informacji zgromadzonej w centralnej bazie
danych, badZz w rozproszonych bazach danych. Zardwno w
przypadku centralnej bazy danych jak 1 w przypadku baz
rozproszonych waznym aspektem jest zadbanie o szybki (tzw.
krotki czas reakcji  systemud, bezkolizyjny dostep do

niezbednych informacji.

Czynnikiem decydujacym jest tu zardwno ograniczenie ruchu w
sieci w wyniku wyeliminowania przesytek zbednych oraz
zredukowania do niezbednego minimum siegania przez rdzne
komérki organizacyjne do tych samych zbiordéw danych, jak i
ograniczenie obciagZalnosci poszczegdlnych fragmentdw bazy

danych.

¥ylyczne do realizacji zarysowanego wyzej celu uzyskad mozZna
grupujac elementy zbioru wszystkich komdrek organizacyjnych
przedsigbiorstwa we wzajemnie roztaczne zespolty, postugujac
sige przy tym odpowiednic okreglonym wskaZnikiem wzajemnego
podobienstwa informacyjnego. Na przykitad w przypadku
realizacji rozproszonego modelu bazy danych kazdemu zespolowi
Cewentualnie kilku =z nichd przypisana bytaby wewnetrzna,
lokalna baza danych (podbaza), umiejscowiona w wezle gidwnym
konkretnej podsieci przeznaczonej do obstugi komputerdw
uzytkowanych w danym zespole komdrek organizacyjnych. W ten
sposob zZnaczna czesd ruchu zamykataby sie w danej podsieci. W
przypadku scentralizowanej bazy danych zestaw wszystkich
informacji mozZzna podzielid na poszczegdlne fragmenty
zorientowane na wykorzystywanie przez poszczegdlne zespoly
komdrek, rozktadajac bardziej rdwnomiernie obciagzZzenie
fragmentdw bazy giownej. a w ten sposdb redukujac czas
reakcji sysﬂemu pomimo nie zmniejszonego globalnego ruchu w

sieci.



W koricu 1981 roku powstata w PIAP koncepcja =zastosowania do
rozwiazania ww. zagadnienn aparatu metody zespotow Max -
minimalnych. Koncepcja ta byia przedmiotem 2 publikacji w
Biuletynie PIAP nr 5 - 157 ~ 91. Stanowita ona kontynuacje
oryginalnego pomysiu omdwicnego w artykule: Stanczak W.: "An
Introduction to Max — minimal Sets”. Control and Cybernetics,

Vol. 15, No. 1, 83 - 9Q.

Jednakze opublikowana w Biuletynie PIAP nr B - 157 ~ @i
metoda rozwiazywania zagadnienia wyszukiwania zespotow Max -
minimalnych w zasadzie stanowi jedynie dowdd konstrukcyjiny
algorytmizowalnosci problemu. Jest ona zbyt maito efektywna

dla zastosowan praktycznych.

W pracy (Zatacznik 12 zaproponowano efektywny algorytm
wyznaczania zespoldw Max - minimalnych. Jego ziozonosd
obliczeniowa jest proporcjonalna do na, tzn nadaje sie do
praktycznych zastosowan, nawet w przypadku rozwiazywania

problemdw o duzej wymiarowosci.

Zamieszczony w zataczniku 1 manuskrypt artykuiu zostanie
zgtoszony do druku w periodyku naukowym Control and

Cybernetics.
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An OCRS algorithm for finding Max — minimal sets
Wiestaw Stanczak
Industrial Research Institute for Automation and Measurements

Warszawa, Poland

In [S. 10] the relationships between the generation of Max -
minimal sets and the evaluation of maximum capacities through
a network is shown. A polynomial - Ltype algorithm for solving
the latter problem is proposed. due to the idea introduced by
Hu [3]. The application of this algorithm and some additional
features of Max - minimal sets C(derived hered lead to a
modification of the method for generating Max — minimal sets
described in [10]. It is shown that this new method needs
OCna) elementary operations. while the previous one is of the

OCn4) typ%.
1
1. Introd&ction

The conc’pt of Max — minimal sets as introduced in [81 and
redefined further in [(10] can be applied for solving numerous
probléms of a graph partitioning type [8, 8. These problems
consistfl in general, in dividing the set of wvertices into
subsets. such that the aggregate mutual connections between
verticgs Ccalculated as maxima among appropriate elementary

connections? in a subset are greater than those between the
1

verticoes in the subset and the vertices outside it. A
polynomial - type algorithm for solving this problem is
propo'ed in {101. It needs O(n43 elementary operations. 1i.e.

in ayerage it consumes a number proportional to ns/lnn such
opergtions for determining a single Max — minimal set, since
the rardinality of the class of all Max — minimal sets in a
graéh with n vertices does not exceed (1.8 + 1InCn - 121n [(8].
Thif fact limits the applicability of the method toc the cases
of a 1less dimension and thus reduces its practical

useful ness.

The paper is organized as follows. First, an algorithm for
calculating the maximum capacities through a network Cdthis
problem was first stated by Pollack [81) is derived. 1In

distinction tc that described in [10]. it bases on an idea
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pr%posed by Hu [31. Second. it is shown that the new
algorithm.needs O(nal elementary arithmetic andsor computer
oéerations. Third, the definition of Max — minimal sets is
rdcalled and some their features are reminded. Fourth. a new

aracteristics of Max - minimal sets is proposed. It

requires a’ lesser computational effort to check whether a

nodempty proper subset of a given vertex - set constitutes a
Mzl — minimal set than those stated previously in (8, 9il.
at leads to a new algorithm for finding Max - minimal sets.

Its basic idea is, in fact, the same as for the algorithm
%onsidered in [Q, 101, but the new features derived here give
% possibility to delete andsor redefine several steps of the
brevicus algorithm, which results in decreasing the
Jcomplexity as it will be seen in Section 4. Fifth. the
remaining details of the implementation for the new algorithm

are described and there is proved that it is of type O(nab.
2. Maximum capacities through a graph

Let X, |X| =n > 1, be a finite set and w be a mapping
symmetric with respect to its arguments with the domain <{x,
vy : x, y € X>r and with the range consisting of the set of
real numbers and a dummy value denoted throughout the paper
by d. The latter |is assumed to possess the following
min{d. &> = 4 and mind{d,

properties: max {d, a> = max{d, d>
@y = a for any real a. We consider a weighted graph <G, w)
defined by the complete undirected graph G = (X. EJ> without
self - loops C(we assume that the reader is familiar with the
basic notions of the classic graph theory as described, e.g..,
in [1. 51, and thus we do not remind appropriate definitionsd
having X as its vertex - set and £ = {{x. vy o ox. ve X, x #
v> as its edge set, and the above mentioned function w.

which describes weights attached to edges.

The Max - capacity V() of a cut - set C is wunderstood by
means of the formula VCC) = max{wlx, ¥ : {x. y> € C> [,
101. Moreover., let P = (U, EFD, U X, |[U] >1, be a Csimple)
path in 6. The capacity WCP) of F is defined as WC(P2> =
mindwlx, y2 : {x, yv> € EP} [3, 8, 9, 10]. We refer to any cut
set C* = CCx; y) separating two distinct vertices X and v

C(i.e such cut - set which deletiopn breaks all paths joining
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these vertices) as to Max — minimal cut - set if its Max -
capacity attains the smallest value among all cut - sets in G
separating the indicated x and v (g, 101. Its wvalue |is
dencted here by txy and called the (x. ¥y th terminal Max -
capacity, x. v € X, x # y. For conveniencg we additionally
assume txy =d for x =y € X, and the square matrix ftxy] of
order n is known as the terminal Max - capacity matrix for
CG, w2 [3, 10]. The terminal Max - capacity matrix for any

given (G, w) can be realized by some weighted tree CTR’ W

\

TR = (X, E}FP (see Theorem 1 in (891> and by some weighted
path CPR’ wPR)’ PR = (X, EPRJ (see Theorem 2 in [891D, which

means that each (x, yJth terminal Max - capacity has the same
value in (G, w2 as for the mentioned tree and path (so -
called the tree and ~ or the path realizing the terminal Max
- capacity matrix of (G, w). respectively). The importance of
paths realizing terminal Max - capacity matrices in the
theory of Max — minimal sets becomes obvicus in the light of

(9, 101 and is confirmed in Section 3.

The maximum capacity W%y through a weighted graph <6, w
between its distinct vertices x and y 1is the greatest
capacity among all paths in CG, w Joining these x and vy (3,
8. 10]. If we additionally define ny'= d for each x = y € X,
then we obtain (see Theorem 8 in [10]. which is, in fact a
black carbon copy of Theorem 1 in Section 8.7.2 of [11> that
the.simple relation

txy = w&y, for any x, v € X, <15
conneclts maximum capacities through (G, w) and terminal Max -
capacities for (G, ). Thus, since the method for the
construction of path realizing a given terminal Max -
capacity matrix is known Csee the PRTM procedure in (101,
being of type OCna)) and is rather efficient, then according
to €12, it remains to pay our attention toc derive a procedure
which finds wgy’s andﬂ uses to do it a less numbers of
operations than OCn™ required for the EMPC procedure
described in [10]. We begin with some modification of the
implementation proposed by Kevin and Whitney [4] for the
algorithm of Prim [71 and Dijkstra (2], which generates

shortest spanning trees. .



Spanning Tree with Maximum Capacities C(STMCDO

1. For each x € X set L{x2) := 0.

2. Set ET 1 = a.
3. Take any x € X.
4. Set ¥ := X — {x>.
5. For each y € ¥ set aly) := x and cCy) := wlx, yJ.
6. If ¥ = ©, then FINISH the STMC.
7. Evaluate ¢ := max{clyld : v & Y>.
8. Find any 2z € ¥ such that clz) = c.
8. Set x := alzd.
10. Update ET : = ET U L, z2>.
11, ¢ := ¢ and t= C.
e =5
12, LCzd = Ll=2D + 1; LCxD = LCxD + 1.
13. 4 CLC2DD := x; A CLCXDD = =,
= x
14, ¥ 1= ¥ - L=>.
18. Define U := Y.

18. Examine whether U = @. If so. then pass to Step 8.

17, Take any vy € U.

18. Check whether c(yd) > wlz, y>. If so, then go to Step 20.
19. Set cCyd
20. Update U :

It

wlCz, yJ and alyd := 2z,
U - {y> and return to Step 16.

The STMC realizes the concept sketched by Hu in [2]. Let us
now consider this procedure with more insight. The finiteness
of X ensures that in each passage through Steps 7 and 8 some
z € ¥ is chosen (Y # @ and ¥ # X due to Steps 4,, 8 and 14D.
Therefore, Steps 14 and 6 yield that the STMC terminates when
the main iteration (consisting, in fact, of Steps 6 - 200 was

performed exactly n - 1 times.

Due to Steps 7, 8 and the second part of Step 5, the relation
cC=z) = txz is obvious. Let us now suppose that

cC=23 <K txz’ cad
which is equivalent to the existence of a path in (G, w), say
£, £ = CU, EFQ, x, 2 € U, joining x and =z, such that W%z =
WCP) > cCz2), according to (1). On the other hand. since STMC
is applied to a complete graph, then in each its main
iteration the cut - set CY,X—Y corresponding to the partition
of X into ¥ and X - ¥ is handled. Moreover, VCCY,X—YD = cCz22,

according to Steps 7, S and 15 - 20, and due to the



definition of Max - capacity. The evident relation Cy X-y N

EP #Z 0 leads to cCzd) = W%Z = WCPD, by the definition of WCFI.

Combining the last inequality with (15, we get <c(=2d =2 txz’
which contradicts (2) and proves the wvalidity of Step 11,

(see also Steps 7 and 8).

The above remarks, the inspection of Steps 1., 12 and 13, and
the fact that the SITMC is an evident modification of the
shortest spanning tree procedure stated in [2, 4, 7] <can be

summarized as follows.

Lemma 1. The STMC generates the (spanningl tree T = 04X, ETD
in O(nd) itérations and the weights txz C{x. z> € ETD are the
C(x. 22th terminal Max - «capacities in (G, w), indeed.
Moreover., for each x € X we have L(xD > O, and,AxCiD, T = 1,
2,..., L(xD, is a list of vertices adjacent to {i.e. joined

by an edge withd) x in T.

From Steps © and 14 - 20 it follows that the values of alyl’s

used in Step 9 are taken from X - ¥. Therefore in each main
iteration the only edge being adjoined to ET’ say {{x, z>,
(Step 102 connects a member of X - ¥ with an element of ¥

(Step 8). Since x is taken into account by the SITMC earlier
than =, then it is convenient to say that x is older than =
andsor that = is younger then . These remarks yield the
following property of STMC, which will be used further in

this section.

Corollary 1. Let {x., 2> e ET' AXC1) = z and AZC1) = x if and
only if either x or =z is the starting vertex (i.e. chosen in
Step 30 of STMC, and the other is obtained in the first main
iteration. Moreover, the relations AZC1D = x and AXC1D = =z

are equivalent to the fact that x is older than =.

Any two distinct vertices of a tree are joined in it by a
single path and no more such paths exist in that tree. Let wu,.

ve X. u”® v. and we consider a path P = (U, E_ 0 joining them

P
in T = X, ETD generated by the STMC. From the discussion

above Lemma 1 it follows that each edge <{x. z> e EP
corresponds to some cut - sst CY X—¥ in (6. w2 such that x €
Y and 2 € X - ¥Y. Without any loss of generality we can assume



that v € ¥. The additional supposition v € Y vyields the

existence of a path. say P’ = (U, E’), joining v and v in a
subtree T* = (¥, E TD of T, £ F < ET' Since £’ < £ T and {x,
2y & E’T, then P° and F are distinct, 1i.e. we get a
contradiction. Therefore. we have v € X — Y. In other words,
the considered Cy X_Y’S separate u and v in (G, wd). That
implies the inequality

¢ < wep, 4>

UV

where the asterisk indicates that the capacity of P is

evaluated in T instead of in (G, w2.

On the other hand, F is also a path joining w and v in (G,
w2, since the latter is a complete graph. Thus, CCu; vd) N EP
# & for any cut — set Clu; v separating u and v in ¢G. w),
i.e. WCPD = V(CCu; vID by definitions of Max - capacity and
path’s capacity. Moreover, Steps 5 and 15 - 20 imply that txz
= wlx, =22 for any {x. z> & ET’ which yields W*EPD =  WCFPD.
Thus, by the definition of terminal Max - capacity, we get
W*CP) = tuv' Combining the latter with (3, we have ¢t =

wY
W*CFD. Therefore, we obtain

Theorem 1. The STMC produces a tree realizing the terminal

Max - capacity matrix of (G. wd.

Thus, instead of constructing the terminal Max -~ capacity
matrix directly. i.e. on a basis of (G, w), we can do it by
using 7 = (X, ETJ, previocously obtained with the aid of STMC.

Let us now consider the following procedure applied to T =
X, ETJ, LCxD S,‘AxCpD s, o= 1, &,..., L{xD, and txy s,
where x, y € X, obtained as an output of STMC described

above:

Maximum Capacities through a Graph C(MCGD

1. For each x € X set txx := d Ca dummy valued, set AR(xD) :=
O and set 1CxD := LCxD,

2. R := 0; ¢ := 1.

3. Take any x « X.

4. Set sCild := x.

5, Take y := AxCleDD Cchoosing a vertex adjacent to xD.

6. Update 1CxD := (x> - 1.



7. Check whether ACyd = O If so <d(i.e. vy was reached
previously), then pass to Step 8. Otherwise. go te Step
10.

8, If 1Cy> = 0, then return to Step 5.

9. Set x := v and return to Step 5.
10. ¢ := ¢ +1; R := kR + 1.
11. Set sCi2 := y and ARCyd := .
i12. j := k.
13. Set w = min{tscj)x,txy>
14. tyst) : = u and ts(j)y HE Y
18, 5 1= 7 — 1.
16. If j = O, then pass to Step 17. Otherwise, return to Step
13.
17. If ¢ := |X| . then FINISH the MCG.
18. Set x := y and return to Step 5.
Steps 1 - 4 constitute an introductory phase. The Cmaind
iteration consists of Steps S - 18. Let us assume that we are

now in Step 5. If we reach it for the first time, then (>0 =

LCxD > O and AxﬁpD, p =1, 2,...,1xD, is a complete list of
vertices adjacent to x in 7T = CX, ET), due to Lemma 1, where
1Cx> indicates the current value of LI{xD. Otherwise we can

arrive at Step 5 from eithe} Step 18 or from Steps 8 and S.

Let us now suppose that 1(xD = O during the passage to Step
5, which is equivalent to the situation in which all the
vertices adjacent to x in 7 were previously visited from x.

If we return to Step S from Step 18, then this event must be

recently preceded by performing Steps 8 - 7, and 10 - 17,
i.e. the condition hCyold) = 0 C(where x = X ew = Yoi14° by
Step 18> must be satisfied in Step 7. It means that x = X ew

was not previously visited, i.e. (x> > O, due to Lemma 1,

which contradicts our supposition.

If we return to Step 5 from Step 8. then leold) # 0 due to

Step 8, x = x according to Step 9, and we gelt the

new _ Yold
same result as in the previous case.

Let us now assume that we return to Step 5 from Step 8. Our

supposition yields AXC1) =y (see Steps S5 - ©6D. First we

consider the second case handled in Corollary 1, in which we

M



have AyCl) =2 x, and Apr) = x, for some index p such that 1
 p £ LCyd. But it implies that previocusly the passage from y
to x .has occured (since, otherwise, IC(yD = p > 13 either via
Step 8 or via Step 18. In both the cases we getl ZCynewD =

tCx = p -1 > 0O, which contradicts the assumption that we

oldD
return to Step © from Step 8. It remains to discuss the case
AXC1) = y and AyCl) = x. The relation ICyD = O ((since we
return to Step 5 from Step 8) implies that other vertices
have been previously visited LCyD> times from y. and no

passage via x occurred, due to Lemma 1.

Let us now discuss some specific situations. First, we assume
that L{=2> > 1 and each u = AzCiD, Tt =8, 3,...,. L{=22, is a
pendant vertex (i.e. of degree coned in T, 2z € X - <{x, y>,
where x and y are as above. Corollary 1 implies that AUF13 =
z for any mentioned u. If in some iteration of MCG we visit

z, then it is evident that we pass to AZCLCZD), return to =,

pass to AzﬁLCzD — 133, return to =z again, pass to A2CLCZD -
237, etc., until we arrive at =z and get 1C(z2) = 1. The same,
obviously, holds for z = y.

Let us now suppose that there exists a path P = (U, EP) in T,

such that U c X - {x, ¥>, some w=u, € U is pendant in 7T,

and other w’s have degree two in T. gbviously, P is a subpath
of some path P’ passing via x and ¥ in 7. By RCwW, u € U, we
dencte the number of vertices in P’ whose separate y and .
It is evident that u is younger 1if and only if kCuw is
greater. The inspection of MCG shows thét if we start with
some 2 = u € U, then first we wvisit all younger. uw's, if

exist. and thus we return to older ones.

By deleting the edge {x, y> from T = (X, ETD we obtain two
subtrees. namely T = CX , £ED2 and T =(X , £ 2, where X N
v Y, Y x x x X
X =, X UX =X, xe X and v € X . Thus. combining the
AY x AY x hY
two specific cases considered above, we conclude that each
vertex of Xy has been visited at least once before the L{ydth
return to y. Therefore, Step 10 ensures that ¢ = {Xyl. The
same construction can be applied to Tx’ but before we return
for the LO>Oth time to x, the condition ¢ = |[X| = [Xy[ + ]Xx!
has occurred, i.e. the performance of MCG has finished. due

to Step 17. Thus, in this case the condition 1CxD = 0 does

8 A,
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not hold in Step 5.

!
Summarizing, in each (main2 iteration of MCG the direction of
pafsage is well - defined. Moreover txy’s used in Step 13
cgrrespond to edges of 7, because y = AX§LCXJD (see Step BD.

They were previously obtained in STMC. The values of ¢ s

afe calculated in the preceding iterations (see Stepsscf?x 4
a¢d 10 - 168). Therefore, the substitution in Step 13 is well
-! defined. Moreover, it is consistent with the definition of
iath’s capacity. By Steps 4, 10 - 11 and 17 all the sCid’s, ¢
=1, ..., n = |X| are evaluated. Moreover, Steps 7 - 8

and 11 ensure that the inequality i # is equivalent to
sCid f sC{’). Let us take r and g, 1 = r, @ = n, such that
{= sCrd) and v = sCgd, u, v € X. If w = v, then t o is
evaluated in Step 1. If uw # v, then without any loss of
'generality we can suppose that r < g¢. Thus the value of tuv =
tvu is determined in Steps 12 - 18 for + = @ and J = r.
Finally. taking into account the stopping rule contained in

Steps 2, 10 and 17 and using Theorem 1, we get

Theorem 2. The MCG applied to the results of STMC generates
the terminal Max —~ capacity matrix of (&G, ¥ in a finite

number of iterations.

Now, it remains to estimate the complexity of STMC and MCG.
Steps 7 and 8 of SIMC can be realized simultaneously and
require IYI - 1 comparisons in each main iteration. In Steps
18 - 20 we perform |Y| comparisons and at most 2|r|
substitutions in each main iteration. Therefore, due to Lemma
1, Steps 7, 8 and 15 - 20 need OCna) operations for the whole
STMC. Since in Steps 1 and 5§ we perform 3n — 2 substitutions
only once, andvthe number of operations in Steps 2 - 4, 6 and

@ - 14 does not depend on n andsor |Y|, then the SIMC is of
type OCnaD.

Steps 4, B and B of MCG ensure that from any vertex of X, say
x, the vertites adjacent to it in T are visited at most L{xD
times (due to the stopping rule realized by Steps &, 10, and

172, where L(x3 is, in fact, the degree of x in 7. Since the

sum of degrees of vertices in the tree T equals 2(n - 12,
then visits to vertices of 7T are performed O(n3 times. The
=

A%



control of MCG consists of the second substitution in Step 1,
Steps 2 - 11 and 17 - 18. Any of Steps 2 - 11 and 17 - 18
requires a constant number of simple arithmetic and-sor
elementary computer operations, which is independent of n.
Since the mentioned steps (at least some of themd are
executed during each visit to a vertex and the second
substitution in Step 1 is performed n times, then the control
of MCG consumes O(nd operations. By the first substitution in
Step 1 and by Steps 12 - 18 the appropriate entries of the
terminal Max - capacity matrix are evaluated. The former
costs n substitutions. Steps 13 - 16 consume two comparisons,
three substitutions and a single subtraction per each pair
tuv’ tvu’ U, v e X, u 2 v, and Step 12 needs only one
substitution for a whole loop performed during each visit to
a vertex. Since each mentioned pair tuv’ tvu is considered
only once (due to Steps 7 - 9, then the part of MCG directly
connected with the evaluation of terminal Max - capacity

matrix is of type C(nab, and the same holds for the whole
MCG.

Summarizing, the sclution to the problem of maxi mum
capacities through a graph CCand thus the evaluation of
terminal Max - capacity matrix (see (122 with the aid of STMC
and further by applying MCG to the results given by the
former needs OCnED elementary operations. For comparison,
EMPC proposed in [10] produces the same output using OCns)

such operations.

3. Max - minimal sets and paths realizing terminal Max -

capacity matrices

We begin with a convenient generalization of the definition
of Max - minimal sets Cintroduced in (8] for complete graphs
with non - negative edge weights and extended for any real
welghts in [101D. Namely, let F = (X, EFD be a subgraph of G

= CX, ED described in Section 2, and i.e. a

w = w .
CED IEF

restriction of w to the domain EF' For nonempty and disjoint

subsets 4 and B of X we define

C4, BD = maximindwCx, ¥J : x, yv € X, x # y>,

Cx, ¥ 1 x e 4, v € B> (4>

e £
Yo

10
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A nonempty proper subset $§ of X is called a Max - minimal set

in CF, w3 if the inequality mCFDCR’ s - R > thDCR, X - 3
holds for sach R <« § such that @ = R = S,
It can be easily verified that mCA, B = mCG)CA’ B =

max{wlx, ¥vJ : x € 4, yv € B>, wkich yields that for F = G the
above definition of Max - mini;al seﬂs is consistent with
that given in [8, 8, 10]. Moreover, in the further discussion
we need the following features of Max — minimal sets (compare
with Theorem 1 in [8], Proposition 2 in [(8] and Theorem 4 in

(9], respectively).

Proposition 1. § is a Max - minimal set in (G, w. 1if and

only if either 5 = {x¥, x € X, or $ is a union of pairwise

disjoint ﬁax = minimal sets in (6. w., say Sl’ Sa,...,Sh, and
the condition

nCZ, X — 23 < min{misi. X - SiD =1, 2,..., k> CH)
is satisfied for Z = $ and does not hold for each Z = |_J Si’
where J c <1, 2, , B , 1 < |J| < k. i
Proposition 2. If S is a Max!- minimal set in (&G, w). then

the elements of S are consegﬁtive vertices (not separated by
any element:- of X — 53 in eagh path realizing the terminal Max

- capacity matrix of (G, w

Proposition 3. Let S be a subset of X such that 1 < ]S| <
|X]. Then $ is a Max - minjmal set in CG. w) if and only if
the inequality .

t /> t caEd
xz >y

holds for each pair of diktinct x, z € S and any vy € X - S.

Let (G, W) be defined analogously as CG. w) in Section 2, but
with the only distinctidn that wlx, yJ’s are replaced by
axy’s, X, Yy € X>Vvoreover, throughout this section we also
assume that CP, W), P = (X, EFD, indicates a path realizing

the terminal Max - capacity matrix of CG. w). Evidently, P is

a subgraph of G, i.e.‘$J= GEPD Canalogously, below w2 also
write'%jinstead of m, J. Thus, Theorem 3 of [3] can be

(=]
rewritten as follows.

Proposition 4. If S is a Max - minimal set in (G, w2, then S

11
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is also a Max — minimal set in any CP,GEL

Now, we are in a positi'n to prove the main result of this

section and the whole paper.

Theorem 3. § is a Max minimal set in a path realizing the
terminal Max ~ capacitly matrix of (G, w2 if and only if it is
also a Max - minimal %et in (G, w).

1
Proof. Let S be a Maé — minimal set in (P, ’tﬁ. We can
restrict our conside#ations to the case |S| > 1 only, since
for |S| =1 the assention is obvious. By Proposition 2, the

definition of Max - ﬁinimal set and the deééription of (G,

W, we get

MLS, X - S = maxlt .t N >. &)

: kR-1"k h+|S|~1 h+[$|
if only S n <x1, Xn} = @, where for convenience, one of two
possible orientatiéns for the path P is assumed, and the

subscripts assigned to vertices indicate the positions of
vertices in P with respect to this orientation. According to
Froposition 1, thé value of(mts, X - 5 should be compared
with‘EtR, X - R’s for nonempty proper subsets R of & such

that R’s are also Max - minimal sets in (P, (;5. Therefore,
using Proposition 2 again, we obtain

MCR, X - R0 = max<t , ot > c8d

X, X, x X .
i-17¢ J 7+

for the R’s as mentioned above, where {, j = k, R + 1,...,R +
[Sl — 1. Combining (72 and C8) with (5) for Z = S, we obtain

max{tx ot « '} < t. <’ e

, kR-1"k k+|S|—1 k+]S| u—1""u

for any u = k+ 1, R+ 2,..., R+ |[S| -2, since. in parti-

it

cular [R] 1. The inequality (8 immediately implies (8> for

each pair of distinct.x, z € S and any v €« X - S. Thus. § is

v

Max ~ minimal set in (G, w), due to Proposition 3.

o~
Since S is a Max - minimal set in (P, w), then lS! < [X| , by
definition. Therefore, O < ]S M {xi. xn}[ <1. If iS N {xl,
'xn} = 1, then either cx > or tx > should be
r-1"k k+|S|-1%k+ S|

replaced by min{i:xy P X, ye X, x # y> in (72 and (83, and

the rest of arguing remains in force.

i
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Thus, for!accomplishing thre whole proof it suffices to apply
Propgsition 4. Q. E. D.
i
4

The #se of Theorem 3 instead of Proposition 1 gives a
possibility to decrease the computational effort required for
checking whether any set is a Max - minimal set in (G, wd.
Namely, the approach described in Section & of [10] vyields
the execution of 28(n - r> - 1 comparisons to compute the
value of mCQ, X - Qi (see Steps 18 - 20 of SP in [10]) for a
s&ngle Q, |Q| » which consists of consecutive vertices
in CP,’%S and, prelimlnarlly, O(nab comparisons to obtain
LAY, X — {x>2’s GStep 3 of SP in [1013, in addition. In
contrast, (72 and (8) imply that to calculate ‘%k@, X - &
Cand, in particulav,'%k{x}, X — {x>2) it suffices to perform
only one such operation. That proves the practical importance
of Theorem 3. In t%e new version of the algorithm for finding
Max — minimal sets, which is described in Section 4 in
details, we use sSome conseguence of Theorem 3 and

Propositions 1 and 2 instead of Theorem 3 itself. Namely

Corollary 2. S is a Max — minimal set in (G, w, if and only
if either S = (x>, x € X, or $ is constituted by consecutive

. . . : . . . ) C
vertices in (P, w2 and it is a union of pairwise disjoint Max

- minimal sets in (G, w), say Sl’ 52""’Sk’ such that the
condition
~
Dz, X = 2 < min{mCS,. X = S5 : € =1, 2,..., k> (10D
is satisfied for Z = § and does not hold for each Z = |_J S,
teld
where J < {1, 2,...,kR> , 1 < IJ! < kR, and the latter form of

Z also consists of consecutive vertices in (P, wS.

Finally, we mention a next feature of Max - minimal sets in
CG, w) (see Lemma 2 in [81D, which can be easily extended for
the case of Max - minimal sets in (P, QS by means of Theorem
3.

Proposition £. Two Max - minimal sets in (P, Qﬁ> are either

disjoint or one of them includes the other.

Proposition 5 is used in Section 4 for showing the wvalidity

of the new algorithm.
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4. The new algorithm

The idea of the new algorithm is similar to the previous one

described in [10]. Namely, basing on any path realizing the

terminal Max - capacity matrix for a given (G, w the
successive r — tuples, r =2, 3,..., N 7 1. of consecutive
vertices -are examined whether they constitute a Max — minimal
set. If the result of examination is positive, then, due to
Proposition B, the considered r - tuple 1is merged into a
single vertex, the resultant self - loopg are deleted, and

the above mentioned. way of searching is applied to the r -

tuples of this updated path, etc. The performance begins for

r = 2, and to satisfy the conditions given in Corollary 2 no
Cr + 1D - tuples are considered before finishing the complete
inspection of r - tuples.

Let us denote

hu = tx x , 11>

@ utl
where the labelling of vertices is consistent with their
ordering in a path realizing any terminal Max - capacity
matrix, say in CP,(GS Cthis assumption holds throughout this

section), and

hmax = max{tx s X, Yy e X, x # oy,
12D
hmin = min{txy DX, v o€ X, x E yr.
Now, we consider the following procedure:
.Searching Max - minimal Sets CSMSD

1. Each <x», x € X, is a Max - minimal set in (G, w2 Cand in
CP,($SD.

z- hO 0= hmin; hn P hmi—n'

3. Set CARIXw := 1, PREDCW := u — 1, SUCCCwWw ::= w + 1.
NEXTCw := u + 1 and aCw := max{hu_l, hu}’ for u = 1.
2,..., n = |X]|.

4. } = 2.

5, u = 1.

6. ¢ := SUCCCw.

7 If ¢ =n + 1, then go to Step 18.

8., k := c + CARDCcD; J := O.

14 /’8
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8. h = hc; a = alud.
10. Set & : = max{hPREDCuJ’
11. Check whether b < alw. If so (i.e. the considered set is

A and aCw) := min{a. alcd>.

a Max — minimal set in (G, w)), then pass to Step 17.

Otherwise alw := a.

12. SUCCLW := k.

13. If 5 > O, then go to Step 1.

14. Set uw = NEXTCw and return to Step 8.

15, r :=nr + 1.

186. If r < n, then return to Step B. Otherwise, ISTOP.

17. The considered (kR — W - tuple {xu, Xowl? xk—l} is a
Max - minimal set in (G. wJ.

18. Set hu := h and CARDCwW := k — u.

19, Update j := j + 1 and set a := hPREDCu)'

20. BEG( D := wu; { := r.

2l. Set uw := PRED(wW.

2. If v = O, then pass to Step 5.

23. t := ¢ - 1.
24. If i # O, then return to Step 10.
25. v := BEGC .

26. PREDCRY := v; NEXTCw) := k.

27. If v = 0, the return to Step 3.

28. i := r,

29. NEXTCwD := w.

30. © := 1 - 1.

3l. If v # O, then pass to Step 34.

32. Set NEXTC(W := k.

33. If R = n + 1, then go to Step 15. Otherwise, pass to Step
14.

34. u := PREDCvD.

35. NEXTCuD := u.

3B. Set v := u and return to Step 30.

2%
Moreover, we assume that the SMS is applied to the (F, w. If

for no r - tuple consisting of consecutive vertices in CP.‘tﬁ
the condition in Step 11 heold then, obviously, only

preliminary Steps 1 - 4 and further Steps 8§ - 16 in a loop

are performed. It is evident that in such a case first all

the pairs {xi, xi+1} » for ¢ =1, 2,..., n — 1. further all
the triples {xj, xj+1. Xj+8} » J=1,2,..., n -2, and, in
general, all the r - tuples {xu, Xl Xu+r—1}’ v = 1,

— 45—



2,..., n—r + 1, are inspected, r = 2, 3,..., n — 1.

Let us now suppose that the currently handled r - tuple has

xu+1,..., xu+r—1}’ and that no wvisit +to

Step 17 has been previously performed. The value of alw

the form Z = {x_,
u

corresponds to the right - hand side of C10), and & equals

‘%kz, X — 20, due to {72, In other words, the condition

checked in Step 11 is the same as in €10). Morecver, due 1o
our supposition, no set like {xu, X1 * xu+1_1}, ! = 2,
32,..., r —1, is a Max — minimal set. Thus, dus to Corollary

2, the satisfaction or violation of the condition in Step 11

is equivalent to the fact that Z is or is not a Max — minimal
set. The latter situation was considered above. Let us now
pay our attention to the case in which Z is a Max -~ minimal

set, indeed. According to Proposition 5 no union of any
nonempty proper subset of Z and a subset of X - Z constitute
a Max - minimal set. Therefore, it seems that Z can be merged
into a single vertex .(consider Steps 17 - 20 and 28 - 35 for
a constant J 2 12> without omitting any Max — minimal set in
the further performance of SMC. It implies that the next
examined r - tuple, if exists, should begin with X which
is realized by Step 32 (see also the parts of Steps 2, 8 and
18 concerning CARDCwW and Step 63.

Let us now additicnally suppose that ww > r, we started to
inspect the (r + 12 - tuples, the currently handled (r + 12 -
tuple has the form {xu—r’ X epal P
to Step 17 has been previously performed for (r + 12 -

. s xu}, and that no visit

tuples. This {x » X ..., x> contains x , where X

u-r u-r+1 U w u
stands for the previously considered Z, i.e. in fact, this
Cpseudo) (r + 1D - tuple corresponds to the 2r - tuple {xu—r’
Xt * 7 X0 xu+1""'xu+r—1}' Tt means that, e.g., all
sets of tLype Zl = <xu—r+l' Xl Xt Xyttt
x >, L =1, 2,..., r -1, are not examined at all. To
ut+r—1
avoid this situation Steps 19 - 38 are introduced. For j = 1
they handle first Zr-l’ second Zr—a""’ and finally Zl’
since Zr—l < Zr_2 Caevanr < Z1 Ccompare with Corollary & and
Proposition 82. If any new Max — minimal set is found. say
ZL’ then w is replaced by ~ + r - L. etc., and the
modification realized by Steps 17 - 27 and 10 - 13 starts

again and again until either the first vertex in (F, Qﬁ is
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backtracked Ci.e. u = O, see Step 220 or a sequence (s, r -

12 = Cx_, x I 3 of r - 1 consecutive vertices in
o~ s+1 s+r-o

CP, W is found such that they do not belong to a Max -

minimal set and are the close predecessors of the last Max -

minimal set, say E: constructed in this modification.

Obvicusly, Z = {x

I )

x x >.
s+r-1’ Ts+r u+r—1

From Proposition B it follows that by applying the above

mentioned modification. listing the Max - minimal sets

obtained in it and, finally, by merging Z into a single
o~

vertex, we do not lose any Max - minimal set in P, ‘w. On

the other hand, Corollary 2 requires further handling of sets

whose contain E.and any part of r(s., r — 12 in the similar
order as described before. Namely, if we denote Zl,q = {xs+l,
Xoer+1° 70 Nsar-2®  Xs+r-1’ Fs+rt 7 Yusr-t” Xurr’”

xu+r+q}’ g=0,1,..., n ~u-—-r, and 2 =0. 1,..., I - 2,
then first Zr—a,o’ Zr—3,0""’ ZO.O should be examined,
further Zr—a,l"'l’ ZO,l‘ etc. Such arrangement of inspection

is realizing by reversing the NEXTC(.2’s labels attached to
the elements of 7i(s, r — 1D C(Steps 28 - 382 and by assigning
to them the same successor JUCCC.2 in Step 12. These remarks

and the use of Thecorem 3 lead to:

Theorem 4. If the sequence Cxu ruwu=1, 2,..., n) gives the

ordering of vertices in a path realizing the terminal Max -

capacity matrix of (G, wd, and A . A . ., h are as in (113
u min max

and C12), respectively, then the SMS finds all Max - minimal

sets in (G, wD.

Therefore, the new algorithm for finding Max - minimal sets

can be defined as follows

1. Execute the STMC

2. Perform the MCG

3. Realize the PRTM1

4. Execute the SMS,

where PRTML denotes the following modification of the PRMIT
described in [10]:

17



Procedure PRTHML

1. Set 4 := X.
2. p:=1; g = 0; f := 0.
3. If |4] = 1, then go to Step 12.
4. Take any x € A.
5. Set t, := mint : u e 4 - x>, )
A XU
6. If f = 0, then set hmin : = tA and hmax = tA.
7. F :=1.
8. Construct X := {y : txy = tA, v € A>.
9. p:=p + 1.
10. A4_:=H, h_ := ¢t .
Pl e A
11, A := A - H and return to Step 3.
12, g :=¢g + 1.
13. Set xq := X, where {x> = A.
14. If @ = n, then FINISH the PRTM1.
18. Set 4 := A and set A := A .
1 < Q@ P
16. Mcodify A : = max{h » h 2, modify A, := min<kh_, .,
max max Q min min
h >,
Q@
17. Update p := o - 1 and return to Step 3.

Cbvicusly, the PRTMLI also produces a path realizing the
terminal Max - capacity matrix and, additionally, evaluates

h ’s, A, and h as defined in (112 and (122, respectively
U min max

(see Theorem 8@ in [10]D. Moreover, similarly as in Section B8

of [10], it can be proved that the PRTMl is of type OCnaD.

It remains to estimate the complexity of SMS, and further. of
the whole new algorithm. The remarks: preceding Theorem 4
yvield that in the extreme case the SMS handles all the r -~
tuples, r =2, 3,..., n — 1, of consecutive elements in a
path realizing the terminal Max — capacity matrix exactly
once in Steps 4 - 16 and Steps 17 - 27 and 10 - 13 Cthe so -

called modification consisting of Steps 17 - 27 and 10 - 13
avoids the disregard of some r — tuples onlyd, i.e. O(na)
subsets of X. Each of Steps 4 - 27 requires a number of
elementary operations independent of n and of r. Thus, their
total numerical complexity is proportional to na. The

iteration loop constituted by Steps 28 - 36 is performed for
some specific r - tuples (see the so - called modification

considered above Theorem 42 only and, moreover, exactly once

18
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for any of these r - tuples, i.e. it is executed at most n~
times. Each of Steps 28 - 36 is realized by a constant
Cindependent of n and of rd number of elementary operations.
Thus they need OCna) such operations in total. The complexity
of Steps 1 - 4 is, cbviously, of type ©Cnd. Therefore, the

whole SMS requires O(na) elementary operations. Since the
complexities of STMC, MCG and PRMT1 are at most of type
O(na), then the whole new algorithm for finding Max - minimal

sets is of type O(naD.
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