
NRobot Simulations Ltd •
Lynnwood Business Centre,

Lynnwood Terrace,
Newcastle Upon Tyne,

NFA 6UL,
ENGLAND.

Registered in England - No. 2769829
Tel; +44 (0)91 272 3673 Fal: +44 (0)91 272 0121

FAX TRANSMISSION

To E. Malotaux

Company Name

Fax number

From

Date

C.R.I.F.

010322 6462569

Roger A. H. Verrall

Subject

Dear Mr. Maletaux,

18 Januav, 1994 - 05:53 PM

WORKSOACE 3.2

Thank you for your fax. concerning WS3.2 and related products.

I attach a features list describing W53.2 which is the most advanced PC based simulating,

calibrating and programming system for robots in the world. I also attach details of our
electromechanical calibration system which can be used with or without WORKSPACE.

Normally we only quote through our dealer network, but as we do not have a dealer in

Belgium i will quote the dealer prices, in US $, as follows

WS3.2 1st seat 5900.00
Courier delivery 85.00

The price includes all the features mentioned on the attached list, plus 2 volume manual,
installation disks and 9 robot models (no choice)

Options
Extra seat WS3.2 4850.00
Extra robot model 450.00
Extra manuals 180.00
Extra Installation disks 30.00
Robot Language (Each) 3000.00
Applications.
Arc Welding 2500.00
Spot Welding 2800.00
Robotrak Calibration 9300.00.
New Releases
Paint Spraying (June „94) 2800.00
Adhesives and Sealants (June „94) 2800,00
kies (March „94) 750.00

I will arrange to send under separate cover a demonstration disk set for WORKSPACE and a

brochure.

Regards, Roger Verret!.

iZte ZLi ISO=UI mn 'Pll suaTlelnwIS 1c)cfcal c:laz vs-to-et

WORKSPACE 3.0 INDUSTRIAL SPECIFICATION.

SYSTEM FEATURES

HARDWARE.

Minimum Configuration

IBM PC or compatible. At least 640k memory. 3.5 or 5.25 floppy disc drive. SuperVGA, VGA,

EGA, CGA, or HERCULES graphics.

Recommended Configuration

IBM PC or compatible 486. At least 2M free on Hard Disc, 3.5 disc drive. Microsoft compatible

mouse. 2MB of memory. Super VGA graphics.

SOFTWARE FEATURFS.

O
Super VGA.

256 colours
High Resolution
Improved object shading
Workstation Quality

O

DXF Import.
Bring in objects from AutoCad or other CAD systems.

Improved Internal CAD.
Improved drawing of objects
New objects e.g. Spheres, Hemispheres, Solids of rotation, Pipes etc.

Up to 16 MB models (50 times larger than WS2)

No limit on size of object.
No limit on number of arc lines.

plus
Constructive Solid Geometry.
Bdzier Surfaces

Advanced Robot Languages*, Incorporating
Variables.
Repeat, While, IF, Loop structures
Advanced movement commands
Menu selection of Robot Language
Link to external Pascal.

No Need for Postprocessors.
Language implemented on the menus.

Zai " d IZIO 6ZU ISO=GI xn .p.41 suc);1.elnulTs logcm ec:et vs-to-et

O

O

Dynamics.
Models the Forces and Torque's at each joint

Graphs of demand and actual values.

Design own controllers.

Calibration.
Calibrate robots for greater accuracy than the robot controller.

Calibrate models using robot as measuring device.

Computer Aided Learning.
Build up interactive multi-media teaching tools using animation and text, in any

language.

General Mechanism Modelling.
Model and simulate any mechanism.

Tree Structures e.g. JCB's, Multi-arm/legged robots.

Improved User Interface.
Icons
All commands mouse friendly.

Improved Manual.
A4 size.
Tutorials, exercises.
Demonstration guide.

The other features that have been improved from WORKSPACE 2.0 are:-

Full Inverse Kinematics.

Increased Robot library

No limit to track Files.

Plus.

EXE. File is now 3 times the size of WS2
120,000 lines of source code
Runs in protected mode (up to 16 MB usable)
Every command re-written.

* Each Robot language is available at the list price.

All the text on the demonstration disks can be printed by simply clicking on the printer icon.

E121 • d t ica nzu te0=CI mn 'Pll suoTlvInmTS 1 0 4 0 H EE:IBI vs-to-et

ROBOTRAK
Information

Robot Performance Evaluation

Unlike dynamic tracking systems based on expensive laser measuring
techniques, Robotrack tracks the end position of industrial robots quickly,

easily and accurately via a unique electromechanical measuring system. The

benefit to you is accurate robot and workcell calibration at a fraction of the cost
of competitive systems.

val.

What makes Robotrack unique?

Running under Windows TM on a PC compatible microcomputer, Robotrak dynamically

track robot motions using three incremental encoder measuring units precisely mounted

on a rigid aluminium base frame. Each encoder is connected to the robot via Dacron Thi

lines. As the robot moves, the computer collects data through a special interface card for

analysis.

170 • d

NRobo t Simulations Ltd.

IZIO U43 t60=UI

4
mn "P17 suorleInmTS 104021 VE:8I vs-to-et

ROBOTRAK
Infogmation

Ease of use

Robotrak's software provides a standard

graphical Windows interface of menus and

dialogs. Producing charts of collected data is

as easy as clicking a mouse. High quality

charts may be plotted on any Windows

compatible printer or plotter.

Powerful charting capabilities

O

Benefits

COIMMI

MamM

gilliMINMENIMEMIEMEMMIRWIMIMMIV
'MACKER. - x-Y mam

us

7
Woda

ghl

Wg
411

411

f"7106 I

NmediaXiiris

xmi

-1111110- MINN
'', M••••••

Whether you are engaged in education, research, manufacture of robots or off-line

programming, knowing the accuracy and repeatability of your robots is critical to the

success or failure of your automation projects. Robotrak can help!

• Collection of robot motion data is fully automatic.

• High precision components provide accurate results.

• Fully portable system designed for "one man" operation.

• Robotrak costs far less than any comparable system.

• Easy to use and fast.

SO • d

EIRobot Simulations Ltd.

IZIO 3LU ISO=GI

5-
mn 'pll suallElnwIS 1 0 4 0 21 VE:9I T7S—L0-9E

.z-

ROBOTRAK
Information

Measurement specification

• Static repeatability > ±0.2mm in a 2m x 2m x 1.2m envelope

• Variable path > ±0.32mm in a 2m x 2m x 0.7m envelope

• Same path, same speed > ±0.5mm in a 2m x 2m x 2m envelope

• Same path, variable velocity > ±0.7mm in a 2m x 2m x 2m envelope

• Maximum velocity = 4ms-1

• Maximum acceleration = 10ms-1

NRobot Simulations Ltd,

90'cl IZEO ZLZ 180=01 mn 'Pll suaTivinw4s 10 4 0 N SE:8I be-10-81

NRobot Simulations Ltd.,
Lynnwood Business Centre,

Lynnwood Terrace,
Newcastle Upon Tyne,

NM 6UL,
ENGLAND.

Registered in England - No, 2769829
Tel: -r44 (0)91 272 3673 Fax: +44 (0)91 272 0121

FAX TRANSMISSION

O

To E. Malotaux

Company Name C.R.I.F.

Fax number 010322 6462569

From Roger A.H. Verret,

Date 14 April, 1994- 09:59 AM

Subject WORKSOACE 3.2

Dear Mr. Malotaux,

Thank you for your fax. concerning WS3.2.

A seat is the single sales unit of the software. Because it is protected by a security key called
a "dongle" each dongle represents 1 system,

We discount very heavily for education, on the basis that they usually purchase in multi-seat
quantities. The dealer Is given a base price and adds his percentage to that price. For
example the dealer price for 1-10 seats is US$1500 for 11 seats upwards 1345.00. The first
seat order must always include 1 set of manuals and 1 set of installation disks at the prices
shown with the options.

The cost for options is also discounted these being as follows:-

Robot model US$300.00
Robot Language US$1000.00
Additional manual set US$180.00
Additional set installation disks US$30.00
There is no discount for the industrial applications.

Programmes or sub-routines can be written externally and imported using DLL or Usercall.
Dynamics algorithms can be added by using the Userdyn command.

The kinematics are full inverse kinematics but on certain robots we use a general numerical
solution.

Normally only 4 MB of RAM are required. I attach details on the config.sys. These details are
given in the Reference Manual. There is also a Beginners Guide, which starts at the "on"
switch and goes right through to making a simulation with robot models.

TO'd 1310 U.Z IB0=0I mn -pl.] suo3-42/nalls logo?' 3E:90 176 -b@ -bl

S. ą

Your CONFIG_SYS file does not need to look exactly like this but you should make sure you have
these lines inserted if you have DOS 5.0 or above. The line containing HIMRM SYS should be the
first line.

DEVICE—C:\DOS\HIMEM.SYS
DEVICE-.C:\D0S\EMM386,EXE NOEMS
BUFFERS-25,0
FILES=30
DOS—UMB
LASTDR1VE=C
FCBS=4,0
DOS—HIGH
STACKS=9,256

Full details of what these commands and device drivers do can be found in your DOS manual or by
typing HELP at the DOS prompt.

O

O

You should not experience any memory problems on a 8Mb machine if you have set up the drivers
correctly. To check the status of your memory, use the command MEM at the DOS prompt. Here is
the output of this command on my 8Mb machine;..

Memory Type

Conventional
Upper
Reserved
Extended (XMS)*

Total = Used + Free

640K
91K

384K
7,077K

43K
46K
384K

2,533K

597K
45K
OK

4,544K

Total memory 8,192K 3,006K 5,186K

Total under 1 MB 731K 89K 642K

Total Expanded (EMS) 7,488K (7,667,712 bytes)
Free Expanded (EMS)* 4,784K (4,898,816 bytes)

* EMM386 is using XMS memory to simulate EMS memory as needed.
Free EMS memory may change as free XMS memory changes.

Largest executable program size 597K (611,360 bytes)
Largest free upper memory block 45K (45,712 bytes)
MS-DOS is resident in the high memory area.

ZO d

S
IULO t60=4:11 mn 'Pll suoTl'etnal;$ lcaR0 21 CE:60 176-60-bt

28-04-94 11:1S RoJmot Simulations Ltd. UK 1D=091 272 0121 P.01

O

SRobot Simulations Ltd.,
Lynnwood Business Centre,

Lynnwood Terrace,
Newcastle Upon Tyne,

NE4 6UL,
ENGLAND.

Registered in England - No. 2769829
Tel: +44 (0)91 272 3673 Fax: +44 (0)91 272 0121

FAX TRANSMISSION

To Eric MaIota= .

Company Name

\
C.1.R.F.

Fax number 010 322 6462569

From Dylan Bromley

Date 28 April, 1994 - 11:25 AM

Subject WORKSPACE

Dear 'Mr Malwa= ,

Roger Verrall is currently away on business in the U.S. A and will not be returning until Tuesday 3rd

May.
I will try to answer the questions in your fax.

1) The disk swapping is occurring because you are using the demonstration version of WORKSPACE

(DEMO.EXE). The DEMO.EXE version is a real mode version and uses overlays in conventional

memory. To reduce the amount of disk swapping try using the DOS command SMARTDRV.EXE in

your AUTOEXEC.BAT.
The full WS3.EXE commercial version is a protected mode application using extended memory. This

does not have ii large amount of disk swapping.

2) DLLs can be written for DOS applications if the application is a protected mode application, like

WORKSPACE (W53.EXE). However, the DLL capability we provide cannot access the robot and

model directly. The USERCALL option provides up to 10 variable type parameters which can passed

to and returned from the DLL. These parameters can then be used by the WORKSPACE track

program.

3) Usually, finr an institution to qualify for the educational reduction is must use WORKSPACE

solely in teaching. However, in the ease of the Polish Institute we will apply the educational prices

which I am faxing through with this.

hope this has helped you.

Yours sincerely,

Dylan Brarriley.
e-7

29-04-94 11:1S Robot Simulations Ltd. UK 1D=091 272 0121 P.02

O

WORKSPACE 3.2
Information

The prices below are the minimum for educational establishments only.

The prices stated are only applicable for institutions who will use Workspace solely
in teaching. These prices do not apply to institutions who intend to use Workspace

in research or consultancy projects for the benefit of industry, or to industrial
companies who intend to use Workspace for internal training.

Workspace (educational) price list

Item

. .

Price (in U.S. Dollars)
Workspace 3.2 softwaret

Including Karel Interpreter and 9 Robot models
IRS 2000, IRB L6E,

Puma 260, Puma 560, Puma 760.
IR161/15,

RTX,
MA2000, MA3000

First seat 5500.00

... Upgrade from Workspace 2.0t 675.00
Set of Manuals 195.00

Installation disks 30.00
Postage and packing (outside U.K.) 85.00

Options
Additional Robot Model* 750.00

Additional Robot Language Interpreter* . 1550.00
Additional set of manuals 196.00

Additional set of installation disks 30.00
Additional seats of WORKSPACE — 3000.00

t Single licence to use software. Does not include installation disks and manuals.

• These items are supplied under the terms of a site licence. Please contact Robot Simulations Ltd. to
determine availability of your robot or robot language.

N.B. Prices and specifications are subject to change without notification. There is no difference between the
industrial and educational system.

Robot Simulations Ltd.
rev.3 28/04/94RAHV

O

Ao
NRobot Simulations Ltd.

O

O

MotView
A Visualiser of Motion in the Plane"

(version 2.1)

Geert-Jan Giezeman2

August 16, 1993

„This work was partially supported by the Dutch Organisation for Scientific Research (N.W.0).
2Department of Computer Science, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The

Netherlands. email:geert@cs.ruu.n1

41

Contents

o

o

1 Introduction

2 The MotView Library

2

4
2.1 Definition of the Layers 4
2.2 Moving a Robot 9
2.3 Responding to User Input 11
2.4 Error Checking 13

3 The User Interface 14
3.1 The Main Form 14
3.2 The Settings Form 18
3.3 The Print Form 19
3.4 Placing A Robot 20

4 The MotWrite Library 22

5 The Viewing Program 23

6 Future Developments 24

A Overview of Routines 25

1

Chapter 1

Introduction

When one designs, implements and tests motion planning algorithms, it is very convenient
to have visual feedback. In this way it is easy to discover if something goes wrong (colli-
sions) or if some peculiar path is chosen. The software environment MotView is meant to
make it easy to provide this kind of feedback.

MotView stands between the application programmer and the user. To the application
programmer MotView offers a number of calls to define a scene and to move a robot
around. The application programmer doesn't have to worry about the graphical aspects.
The number of MotView routines is very small, so MotView is easily mastered.

The user has the benefit of a single user interface for viewing motions. MotView offers
the possibility to view the motion in many different ways. The user can zoom in and out,
follow the robot while it is moving, change colors of objects, play back motion, check for
collisions, display the sweep volume of the robot etcetera. Also it is possible to generate
a postscript file to print a scene on a printer. The user interface is user-friendly and quite
simple to use. Clicking the mouse on buttons will do the trick in most cases.

In our model there is a world with obstacles in it and one or more moving objects called
robots. A robot can have moving parts (links) that are attached by means of revolute or
prismatic joints.

Apart from those objects it is often useful to have extra visual information available.
This can help to visualise what happens in the algorithm. Suppose, for example, one
wants to solve the problem of a translating polygon in the plane with fixed orientation.
This can be solved by reducing the polygon to a single point (its center) and blowing
up the obstacles (taking the Minkovski difference). One would probably like to see the
Minkovski differences and see how the point moves among them. To this end the Minkovski
difference can be added as an extra layer. The problem then can be viewed either in real
space or as a point in Minkovski space. When using a potential field method one could
show the equipotential lines. One could show a quadtree when using approximate cell
decomposition. This kind of information helps to see what happens in the algorithm,
where the complexity resides and what can be done about it.

The above examples add layers in a fixed place. Also information associated with the
robot can be handy, for example a buffer zone around the robot.

In the viewing program the user can choose at any moment which layers of information
are visible.

In a MotView program there is a sequence of three phases: first the layers are defined,

2

then the moves are defined and finally the motion is viewed. Because of this separation, it
is not very well possible to show how datastructures change while the algorithm is running.

MotView is developed for Silicon Graphics workstations. The next chapter describes
what other libraries are needed to be able to work with MotView. There is also described
how the package can be obtained.

The rest of this document is organised as follows: first there is a chapter describing
the calls of the MotView library. This chapter is of interest to application programmers.
Then there is a chapter describing the user interface. It is followed by a chapter about
the motion viewing program. Finally there is a small chapter that says something about
future developments.

3

Chapter 2

The MotView Library

The MotView library has only a few calls. Some deal with the definition and removal of
layers, some serve to move the robot, others enable the user to interact with the program.
The phases of definition of the layers and motion of the robot are separated: first the
layers are defined, then the motion is described. It is not possible for objects to appear
during the motion. The next sections describe the calls needed to perform those actions.

The MotView library is written in C++. It is built on several other libraries. Among
these are:

• FORMS library for the user interface.

• PlaGeo library for geometrical primitives in the plane.

• RS2 for the definition of robots and configurations.

• GL for rendering.

MotView, FORMS, PlaGeo and RS2 are ftp-able from archive .cs .ruu.n1 in subdirec-
tories of /pub/SGI. They all come with documentation in LATEXformat.

This manual supposes that the reader is familiar with PlaGeo and RS2, because some
data types that are defined there are used in MotView. Knowledge of C++ is not needed for
using the routines of MotView. The little that is needed to use PlaGeo and RS2 routines
is described in a section of the PlaGeo documentation.

An application program that makes use of the library should include the header file
motview.h. On page 6 there is an example program: example . C. This program is used as
a running example in the rest of this document. To see what this program does it can be
compiled:

CC -o example example.0 -lmotview -1rs2 -lplageo -lforms -1fm_s -1gl_s -lm

2.1 Definition of the Layers

The visible objects are described by layers. Layers are constructed with the help of building
blocks supplied by the RS2 library. Apart from a purely geometric shape, layers also have
a color, a height and a name. Every layer is made of points, line segments and polygons.
Other shapes (e.g. arcs) are not yet available and should be approximated. A layer

4

„(5

normally contains a set of related objects. They share the same color and can all be made
invisible by one click.

RS2, and therefore MotView also, restricts robots to chainlike structures: to every link
at most one other link can be attached. This is enough to describe the kind of robots
that are used in factories, but is not adequate for more complicated things. E.g. a human
body with two arms and two legs can not be described in this way.

Synopsis

mv_layer_t mv_define(const pl_geolist &obstacles, int real_object,

int col, int height, const char *name)

mv_layer_t mv_define(const pl_robot &robot, int real_object,

int col, int height, const char *name)

Description

There are four different kinds of layers. First there is a distinction between obstacle layers
(non moving) and robot (moving) layers. A layer of obstacles is specified by a pl_geolist,

a robot layer is specified by a pl_robot, which types are both defined in RS2. So, the first
mv_define routine above defines an obstacle layer, the second defines a robot layer. The
routines return an identifier for the layer that was just defined. This identifier is needed
to refer to this layer in other routines.

The second distinction that is made is between real layers and phantom layers. The
second parameter should be set to true to define a real object. The real layers represent
the objects that are actually in the world (the robot and the obstacles), the phantom
layers represent help information. What is in the phantom layers is up to the application
programmer. Often, layers can be added to show some information about the algorithm,
for instance a cell decomposition, a potential field or a Minkovski difference. For MotView,
the distinction is important for collision checking; this only happens between real objects.

The third parameter describes the color of the layer. This is an index in the color map.
The fourth parameter is the height of the layer. Layers with a bigger height obscure layers
with a lesser height if the two layers overlap. The last parameter is the name of the layer.
This name is used in the user interface.

A robot phantom is defined in exactly the same way as a robot. A robot phantom,
however, can not move on its own; it must always be attached to a robot. Therefore, after
the robot phantom has beeen defined and before it is used in a motion, it should be bound
to a particular robot, using the routine:

mv_bind_phantom(mv_layer_t phantomlayer, mv_layer_t roblayer);

The links of the robot phantom are attached to the corresponding links of the robot.
That's why a robot phantom should have the same structure as the robot to which it is
bound, i.e., the same number and kind of joints as the robot.

Examples

In figure 2.1 and 2.3 there is the code for two example programs.

5

#include <plageo.h>

#include <rs2.h>

#include <motview.h>

main()

mv_layer_t roblayer;

pl_robot robot;

pl_geolist gl;

pl_vertexreray vrr;

gl.el.append(pl_edge(pl_vertex(200, 500), pl_vertex(800, 500)));

vrr.newsize(4);
vrr.replace(0, pl_vertex(100,200));

vrr.replace(1, pl_vertex(130,200));
vrr.replace(2, pl_vertex(130, 800));

vrr.replace(3, pl_vertex(100, 800));

gl.pl.append(pl_pgn(vrr));

mv_define(gl, 1, 0, 0,"obstac1es");

gl.el.newsize(0);

vrr.newsize(3);

vrr.replace(0, pl_vertex(0, 100));
vrr.replace(1, pl_vertex(-50, -100));

vrr.replace(2, pl_vertex(50, -100));
gl.pl.replace(0, pl_pgn(vrr));

robot.replace_link(0, gl);

roblayer = mv_define(robot, 1, 7, 1, "robot");

pl_configuration conf;

conf.set_pose(4.7, pl_vec(500, 200));

mv_abs_move(roblayer, conf);

mv_start_motion();

.conf.set_pose(0, pl_vec(950, 563));

mv_abs_move(roblayer, conf, 3);

conf.set_pose(1.5, pl_vec(500, 700));

mv_abs_move(roblayer, conf, 3);

mv_end_motion();

mv_view_motions(1);

Figure 2.1: code of the running example

6

O

O

the obstacles begin and end position

Figure 2.2: running example

The first program is used as a running example. It defines a very simple robot (a
triangle, without any joints) and two obstacles. The main program is divided in four
sections. In the first section some variables are declared. In the second section the obstacle
layer is defined. A pl_geolist is created containing an edge and a polygon of four vertices.
The robot is defined in the second section. The robot has no joints, so only a single link
(a triangle). The last section describes a motion, which will be treated later. Figure 2.2
shows two scenes from this program.

In the second example program a robot and a robot phantom are defined. The example
is not a typical robot, but with a few lines it shows the major concepts. In order to assure
that the robot and the phantom have the same structure, the robot is copied to the
phantom. Figure 2.4 shows the music stand in two positions programs. See how the score
moves along with the stand.

In those two examples, the robot is explicitly defined in the program. Of course, it is
also possible to define a robot or a set of obstacles in another program and save it into
file. RS2 supplies routines to do this.

Removing Layers

Layers that were defined previously can be removed afterwards. This is useful if one wants
to define several motions in a single file. There are two calls which accomplish this:

mv_remove_ all ()
mv_remove (mv_layer_t id)

The first call removes all layers that were defined. The second call removes a single
layer. The layer is identified by the identifier that was returned when the layer was defined.

7

i8

*include <plageo.h>

#include <rs2.h>

#include <motview.h>

static s_coord jointdescription0 =

{PRISMATIC, O, 100, REVOLUTE, O, 400, -5, 5};

main()

/ /

/ /

//

pl_geolist gl;

pl_robot stand(2, 8, jointdescription);

pl_robot score;

score = stand;

mv_layer_t standlayer, scorelayer;

define the links of the music stand.

gl.el.append(pl_edge(pl_vertex(-100, O), pl_vertex(0, 150)));

gl.e1.append(pl_edge(pl_vertex(100, O), pl_vertex(0, 150)));

stand.replace_link(0, gl);

gl.el.newsize(0);
gl.el.append(p1_edge(pl_vertex(0, 30), pl_vertex(0, 400)));

stand.replace_link(1, gl);

gl.el.newsize(0);

gl.el.append(pl_edge(pl_vertex(0, 400), pl_vertex(100, 500)));

stand.replace_link(2, gl);

standlayer = mv_define(stand, 1, O, 1,"music stand");

define the links of the score and attach the score to the stand.

gl.el.newsize(0);

gl.e1.append(pl_edge(pl_vertex(5, 415), pl_vertex(135, 545)));

score.replace_link(2, gl);

scorelayer = mv_define(score, O, 0, O, "score");

mv_bind_phantom(scorelayer, standlayer);

define the motion of the stand.

pl_configuration conf(2);

conf.set_x(500);

conf.set_y(100);

mv_abs_move(standlayer, conf);

mv_start_motion();

conf.set_joint(0, 1);

conf.set_joint(1, -0.5);

mv_abs_move(standlayer, conf, 3);

mv_end_motion();

mv_view_motions(1);

Figure 2.3: music stand program

8

/19

O music stand in zero position with joints moved

Figure 2.4: music stand pictures

2.2 Moving a Robot

After one has defined the layers, the time has come to let things move. The path that the
robots follow is described in a motion. A motion is built out of several primitive moves.
Primitive is perhaps not the right word here, as in a single move a robot can translate and
rotate, and its joints can move as well. If, however, a robot should first move west and
then move north, primitive moves should be combined to achieve this.

It is possible to define several motions in the same program. For example, if there are
several solutions to move from A to B, every solution can be shown in a different motion.
Between two motions layers can be added and removed.

The routines that are described in this section define a motion, they do not immediately
show it. This can be compared to the shooting of a video tape.

The calls that deal with moving the robot are:

mv_start_motion()
mv_abs_move(mv_layer_t layer, const pl_configuration &goal, double time)
mv_end_motion()

The first call starts the motion. mv_end_motion is called to conclude the motion. Between
these two calls the robots can move around.

The routine mv_abs_move takes three parameters. The first parameter must be the
identifier of a robot layer. This indicates which robot should be moved. The second
parameter is a configuration —this concept is explained in the RS2 documentation— which
is the goal configuration. The robot moves from its current position to this goal position.
The third parameter is the time (in 'seconds) that the motion should take, so it determines
the speed of the move. This parameter may be negative or left out, in which case the
viewer will select a speed itself.

The initial position of robots before the motion starts should be specified with a call
of mv_abs_move before the mv_start_motion call. In this case, the time parameter is of

9

no importance.
To determine the intermediate position of a robot during a move, all parameters are

linearly interpolated between begin and end position. This means that the velocity of the
joints and of the main link is constant during a single move. (It does not mean that the
endpoint of the robot follows a straight line.) Of course, when the angle of begin and
end configuration is not the same, the robot can turn clockwise or counterclockwise; the
smallest angle is chosen.

As was mentioned, the timing of moves can be left over to MotView. If one is not
interested in the exact timing of moves, this will often do. One can influence how MotView
chooses the times by means of the function

mv_set_autospeed(double speed);

By default MotView chooses the speed so that a move of ten units in the x or the y
direction takes one second. This speed can be changed with this call. If the speed is set to
100 all moves will go 10 times as fast. This speed only affects moves that do not specify
their own time.

In the last section of program 2.1 a motion is defined. The robot is placed initially in
position (500, 200) with an orientation of 4.7 radians. It makes two consecutive moves, of
three seconds each, to end in position (500, 700) with orientation 1.5 radians (pointing to
the left). The second move will make the robot collide with one of the obstacles.

Synchronisation of Moves

When there is more than one robot in the scene, the synchronisation of the moves may
be important. All moves of a single robot are executed sequentially in the order in which
they are specified. All moves of different robots are parallel. This means that only the
order of moves of a single robot is important. The moves of different robots can be mixed
in any way. They all have there own, separate timeline.

To synchronise one can keep track of the time oneself. For each move specify how long
it should take. To let a robot wait one can let it move to its current position during the
desired waiting time.

Another possibility is the use of the following routines.:

mv_sync2(mv_layer_t idl, mv_layer_t 1d2)

mv_sync_all()

These routines synchronise the moves of two or all robots. When robots are synchronised,
all robots wait at the synchronisation point until all the robots involved have finished their
moves before they continue with the rest of their moves.

In figure 2.5 is shown a program fragment where three robots move and are syn-
chronised, together with the timeline of each robot. Take a good look at this figure to
understand how this works. Note that the last sync-call does not influence the third robot.

For the case that one wants to synchronise more than two (but not all) robots, one
should combine calls in the following way:

mv_sync2(robl, rob2);

mv_sync2(robl, rob3);

mv_sync2(robl, rob2); /* don't forget this */

10

mv_sync_all();
mv_abs_move(robl,conf,3);
mv_abs_move(robl,conf,2);
mv_abs_move(rob2,conf,2);
mv_sync2(robl,rob2);
mv_abs_move(rob2,conf,2);
mv_abs_move(rob3,conf,6);

robi

rob2

rob3

move 1 move 2

move 1 wait move 2

move 1

sync sync

Figure 2.5: Synchronisation of three robots

2.3 Responding to User Input

The user may interact with the application program in several ways. First of all the user
may press buttons and so on of the motion viewer. The viewer should then take the
appropriate action. Then there are calls the application program can make that explicitly
ask for some user response. Finally the application program may do its own stuff.

This section' describes the calls to deal with the first two kinds of user interaction.
The last type is of course the responsibility of the application program. It describes what
the application program should do, not how the user can respond. That is treated in
chapter 3.

Enabling User Input

On startup MotView opens a window (actually, it is a Forms Library form). There is
a region where the scene is shown that is surrounded by a number of buttons, the user
interface. Because the viewer should respond to the input of the user and the view changes
as the robot is moving the application program should hand over control to the library
after having defined some motions. To this end there is the call:

11

int mv_view_motions(int wait)

This call updates the scene and gives the user the opportunity to interact with the viewer.
It is normally called after one or more motions have been defined. It takes care that the
view is continuously updated, reflecting the progression of the motion and the choices
of the user (zooming in and out, showing or hiding certain layers etcetera). If the user
is satisfied he can press the return button to indicate this. Then mv_view_motions will
return (with value 1).

So far the behaviour of mv_view_motions was described when called with non zero
parameter. If the wait parameter is zero (false), mv_view_motions will return immediately
after updating the view and handling the pending user requests. It does not wait until
the user presses the return button. This does not give the user much time to interact with
the viewer, unless called repeatedly. The returned value indicates if the user pressed the
return button, so the two following lines are equivalent:

mv_view_motions (1) ;
while (!mv_view_motions(0)) ; 1* Empty Loop */

Once a motion has been viewed, the two Mot View windows remain visible. They can
be hidden by calling the procedure:

mv_hide 0;

The windows will reappear automatically when another motion is shown, at the next call
of mv_view_motions.

Place a Robot

There are two routines that give the user the opportunity to place the robot in a position.
This can be useful, for example, for asking a start or goal position.

mv_place_robot(mv_layer_t, pl_configuration &conf, , const char *msg)

mv_place_robot(mv_layer_t, pl_configuration &conf,

const pl_configuration &constraints, const char *msg)

The first parameter must be the identifier of the robot that must be placed. Before calling
one of those functions mv_abs_move can be called to specify where the robot is placed
initially. MotView shows the robot in this position and gives the user the opportunity to
move the robot to the desired place. How the user should do this is described in section 3.4.
When the user is satisfied with the place he can indicate so and the function returns. The
conf parameter contains the configuration in which the robot was left. The the joint
values will always lie between the minimum and maximum (i.e. between O and 1 for a
prismatic joint and between the minimal and maximal angle for a revolute joint.

In the msg field the user can give a string that is shown when the robot is placed. It
could say something like "Give start position.". If no message is required, an empty string
should be specified. If msg contains a null-pointer a default message is displayed. New
lines (\n) are allowed in strings.

The application can restrict the user in moving the robot by using the second call.
The constraints parameter is a configuration that indicates whether the user can move
the robot in that direction. In fact, this is not a real configuration. All values, of x and

12

y position, angle and joints, should be either MV_FIXED or MV_FREE, two values
defined in the motview header file. .

In order to make the creation of those special configurations a bit simpler, there are
a number of routines. The following functions return a configuration where every degree
of freedom is free, everything is fixed, only the joints are fixed or only the joints are free
respectively. The j ointcount parameter expects the number of joints of the robot.

pl_configuration mv_all_free(int jointcount)

pl_configuration mv_all_fixed(int jointcount)

pl_configuration mv_joints_fixed(int jointcount

pl_configuration mv_joints_free(int jointcount)

For example, the following example fragment aks the user to place a robot with three
joints in a start and goal position. In the start position, only the orientation is fixed.
The endposition has the same position as the start position, only the joints may be in a
different position.

pl_configuration constraints(3), startpos(3), endpos(3);

constraints = mv_all_free(3);

constraints.set_angle(MV_FIXED);

mv_abs_move(rob, startpos);

mv_place_robot(rob, startpos, constraints, "Give the start position.")

mv_abs_move(rob, startpos);

mv_place_robot(rob, endpos, mv_joints_free(3), "Give the goal.")

2.4 Error Checking

Not every combination of library calls makes sense. MotView does some checking whether
calls are appropriate at a certain moment. If this is not the case, the user is informed and
the program is aborted. The messages are intended to be self-explanatory.
Here are some examples of things that are checked:

• Only robots can be moved.

• Robots should not be synchronized outside a motion.

• Robot phantoms must have the same number of joints as the robot.

• Configurations should match robots (equal number of joints).

• A robot phantom is not bound to any robot when a motion is started.

When MotView finds an error, the program will halt. First the user is asked if a core
dump should be created. This core dump can be inspected with the help of a debugger to
inspect the code at the point where things went wrong.

13

•

Chapter 3

The User Interface

MotView offers a great variety of ways to view motions. The user can zoom in and out,
show the motion in slow motion, display or hide layers and much more. One always views
one motion at a time.

When MotView is started there appears a viewing window where the scene is displayed
surrounded by a number of buttons and sliders, the main part of the user interface. Other
parts of the user interface can be popped up by pressing some buttons. The user interface
windows are called forms. Initially a view is chosen so that a square part of the scene
between coordinates (0,0) and (1000,1000) can be seen.

Perhaps the best way to learn how to use the viewer is by running an example program
and try out all. options. There is an online help facility, but most functions speak for
themselves. The buttons and sliders are activated by putting the mouse over them and
pressing a mousebutton.

Some actions are performed by pressing a mouse button and then drag the mouse.
This is the case for sliders and for mouse actions in the viewing window. Those actions
can be controlled more precisely by keeping the left shift-key depressed while dragging.

3.1 The Main Form

In the main form, the part below or beside the viewing window, are the functions that are
used most frequently. In figure 3.1 there is a picture of this form. The form is divided in
three sections: display control (top left), motion control (bottom) and global control (top
right). Actually, the arrangement can be different than is shown here, but all the buttons
and sliders should be there.

Display Control

The top left part of the main form is the Display Control section. Here the user can select
what layers he wants to see. Apart from the layers defined with the MotView library (the
user defined layers), MotView can show a number of features associated with the motion
of the robot. Those features can be regarded as extra layers of information defined by
MotView. They are called the standard layers in this document. Every layer can be made
visible or invisible by selecting or deselecting it.

The names of the user defined layers are displayed in two browsers on the top. The

14

vs

Obstacle
Layers

Robot
Layers

Current Robot

Steps Center Begin Axes

Sweep Path End Reset View

Collide Follow Orientation 1

Speed Slider

Position Slider

Figure 3.1: the main form

Help

Save Motion

Previous

Next Motion

Settings

Print

Positions

Full Size

Return

1Stop Cyclic

left one contains the obstacle layers, the right one the robot layers. Selecting is done by
clicking on the name of the layer.

Below the right browser is a button for selecting the current robot. The current robot
is a special robot of which extra information can be displayed. To select another robot as
current robot one can press on this field with one of the mouse buttons. The right button
causes a drop down menu to appear from which the user can make a choice. The left and
right buttons cycle through the possible choices.

The buttons for selecting the standard layers are called Steps, Sweep, Center, Path,
Begin, End, and Axes. Other buttons in this section are Reset View, Collide, Follow and
Orientation.

Steps displays the current robot in a number of positions on the path. How many steps
are shown can be controlled in the settings form. This layer is especially nice if one
wants to print a scene. The motion is condensed in a single picture.

Sweep displays the area that the current robot traverses during its motion. If the robot
were a piece of chalk this is the trace it would leave. This allows one to see quickly
if the robot enters some forbidden region.

Center shows the center of the current robot as a little cross.

Path shows the path of the center of the current robot.

Begin shows the current robot in its begin position.

15

.2(6

End shows the current robot in its end position.

Axes shows x and y axis of the robot frame.

Collide controls whether collision checking is on. When a collision is detected the robots
color changes.

Motion Number The field on the bottom right of this section shows the number of the
motion that is viewed.

O

O

Apart from controlling what is visible the user can also focus his attention to a par-
ticular point. If FOLLOW is selected the camera moves along with the current robot. If
ORIENTATION is selected as well then the camera rotates along with the robot. The
user can also zoom in and out and shift his attention. This is not controlled from the form
but in the viewing window. In order to zoom place the cursor in the viewing window and
keep the right mousebutton pressed; to take a closer look move the mouse to the lower
part of the viewing window, to get a wider overview, the mouse should be moved to the
top. Shifting of the viewpoint is controlled with the left mousebutton. Keep it pressed and
move the cursor in the direction you want to see. To undo the zooming and shifting one
can press the RESET VIEW button. This button restores the default view. The default
view is the view one sees initially, but this can be changed in the settings form.

To give some idea how this looks, here are some pictures that correspond to the motion
of program 2.1. The first picture gives the view when steps is pushed. The robot layer
is not selected in this picture. The second shows the robot itself, the sweep volume, the
center of the robot and the path along which it travels.

steps sweep volume, path and center

In the previous picture one can see that the sweep volume intersects with an obstacle.
In the following picture we have placed the robot in a position where this collision is
apparent. Notice that the color of the robot has changed to the collision color. To the
right of this picture is a close-up of the same situation.

16

O

O

a collision close-up of collision

The next two pictures both show the robot in the same position. In the left picture we
see the axes of the robot frame. In the right one the follow orientation button is pushed.

axes of robot frame

Motion Control

follow orientation

Below the display section is the motion control section. In this section the user can
control the position and speed of the robot. At the bottom are buttons that work like a
tape recorder: forward, backward and stop. The speed slider can be used to control the
speed of the motion. Move it to the right to let the robot move faster. The position slider
reflects the position of the robot along its path. It is updated as the robot moves (and
updating is turned on). Grab this slider to move the robot manually. Those sliders can
be controlled more precisely by pressing the shift button while dragging.

17

Finally there is a button called CYCLIC. Normally the motion will stop when the
robot reaches its end position. If this button is on the motion starts again after some
seconds. This is nice when giving a demonstration.

Global Control

At the top right is the global control section. The global control gives access to functions
which are not so often used.

HELP shows a form with online help messages. In this form the user can select a topic
on which he wants some information. The help form can be hidden by pressing the hide
button on it.

SAVE MOTION saves the current motions in a file. First one gets the opportunity
to select the motions that must be saved. By default all motions are selected. It is also
possible to save only the last motion.

Then a file selector is presented to choose a filename. One can press the mouse on a
filename to overwrite an existing file, or type in a new name. One can walk through the
directory structure by clicking on a directory name (shown with a D in front of it).

By convention motion files have a `.mot' extension, so you should preferably use such
a name. The file selector normally shows only files with this extension. This is because
the regular expression in the pattern field of the selector is *.mot. This pattern acts as
a filter: only filenames that pass it are shown. One can edit this pattern by pushing the
mouse on it. Change the pattern to * to see all files in a directory.

If a motion file contains several motions another motion is selected by the buttons
PREVIOUS and NEXT. The current motion number is displayed in the display control
section. When another motion is selected the view stays the same, though the default
view is altered. This is handy if the two scenes are related and one wants to focus one's
attention to a particular point. If this is not the case, one can always press on Reset View
afterwards to get the default view.

SETTINGS shows a form in which the user can adapt various settings. PRINT prints
the current scene. Those two options are described in more detail in the next two sections.

POSITIONS shows a form with numerical information about the current position of
the current robot. From top to bottom there are the time, the clearance between the
current robot and the nearest obstacle, the x, y and theta position of the current robot
and the positions of its joints.

FULL SIZE makes the viewing window cover the whole screen. In this case the user
interface will be placed at the right side instead of the bottom and it will be arranged
differently.

With RETURN one can return control to the application program.

3.2 The Settings Form

The settings form appears when the corresponding button in the global control section
is pressed. In this form one can adapt the color of the different layers and some other
parameters.

There are two browsers that let the user choose colors. In the left one are the user de-
fined layers. In the right one are the standard layers (including background and collision).

18

‚,9

Press on a layer in a browser to select another color for this layer. A palette of colors will
then be presented from which one can choose.

The STEPS slider controls how many steps are shown when steps is selected in the
main form.

UPDATE controls when the information in the information section of the main form
and the position slider is updated. It can have four values:

never never update the info.

special update in special cases: when motion stops or is adapted manually.

periodic same as special, but at least once every ten frames.

always update after drawing of every frame.

If a lot of functions are activated and the scene is complex the motion will be less
smooth. To get smoother motion one can turn off collision checking, information updating,
the display of the sweep volume or steps.

SET DEFAULT VIEW makes the current view the default view. If the viewpoint is
changed afterwards one can restore the default view by pressing the reset view button.
When the camera follows the robot this button has no effect.

Then there is a switch for choosing how collisions are checked. There are four modes,
each increasing what is checked for. In the simplest mode (robot—obstacle) only collisions
between robots and obstacles are detected. The second mode (robot—robot) also checks for
intersections between different robots. The third (link—link) and fourth (neighbour links)
mode add checking for collisions of links of one robot. In the third mode no checking is
done for neighbouring links. This is useful because normally it will be logically impossible
for these to collide (as long as the joint position stays within its bounds), even though
they might actually overlap to give a nicer picture.

3.3 The Print Form

The print form appears after selecting PRINT in the global control section. This allows
one to save the current scene in a PostScript file. One can choose to have a bounding box
around the picture.

The user is asked to supply the name of the file. The saved file contains standard
postscript and can of course be edited afterwards. One can for instance clip a rectangular
instead of a square portion of the scene. One can also insert the file in another document.

The pictures in this document were made in this way. Viewing the example motion
file some shots were taken and saved on file. These postscript files were then included in
this IATEXdocument with the help of the epsf style for including Encapsulated Postscript
in LATEXdocuments.

In order to get a nice picyure on paper, it is probably necessary to select different
colors for the layers, especially when using a black and white printer. This can be done
in the settings form. It is not necessary to choose only grays when using a monochrome
printer: colors will be turned into gray values by the Postscript interpreter.

19

30

3.4 Placing A Robot

The application program can ask the user to place the robot in a position. When this
happens, the main form disappears and another form appears that allows the user to place
a robot manually. Like the main form, this form shows the scene, but there is a different
user interface. The user can move and rotate the whole robot and move the separate
joints. The OK button should be used to indicate that the robot is in the desired position.

There are several ways in which the user can manipulate the position of the robot. First
of all, another form can be made visible (by pressing on the button labeled Positions) that
shows the x-y-position, orientation and joint positions. Figure 3.2 shows this form.

hide
X

Y

angle

joints

0:03
1 :-027
2:0.80

500

100

0.26

0.80

Figure 3.2: the positions form during placing

The x, y and angle field can be edited directly (type in a number and then type
return). To change a joint position, first click on the •corresponding line of the browser
at the bottom. The slider to the right will take the value of the chosen joint. It can be
altered by moving the slider.

It is not necessary to use the positions form. In the first form the scene is shown. The
robot can be grabbed, by pressing the left mousebutton while the mouse is over the robot,
and be moved in the x- or y-direction. If the mouse is not over (or close to) the robot, the
whole scene will move, effectively changing the viewing position.

To move the orientation of the robot, press the middle mousebutton and move the
mouse the left or right of the form (for clockwise or counterclockwise rotation). The

20

orientation can also be altered in steps, using the left and right arrow key. The shift key
can be used in combination with either of those methods to make the rotation go slower.

In order to move a joint, first a joint should be selected with one of the keys O to 9.
Then, the middle mousebutton and the arrow keys will control this joint instead of the
orientation. By pressing the `—' button (next to 0), they will control the orientation again.

Like in the main form, the right mouse controls the zooming in and out. Keeping the
right mousebutton pressed, moving the mouse down will zoom in, moving up will zoom
out.

The application program can prohibit the robot to move in certain directions. In this
case, the actions that were described above will not influence the position of the robot.

Both ways of placing the robot, with the mouse or with the positions form, can be
used at the same time. The changes made with the mouse are reflected in the positions
form.

21

3)/

Chapter 4

The MotWrite Library

Besides MotView there is another library: MotWrite. MotWrite is offline, that is, when a
program is linked with MotWrite instead of MotView, the motion is not shown. Instead, a
motion file is created. This file can be viewed later with the viewing program MotViewl.
It is the same type of file as is generated when one saves a file that is viewed by pressing
the 'Save' button in the user interface.

To compile a program with the MotWrite library, do:

CC -o example example.0 -lmotwrite -1rs2 -lplageo -lm

One can always choose to link with either of the libraries. The source file need not be
rewritten and they both use the same header file. Because MotWrite is offline, there is no
possibility of direct interaction with the user. Functions that deal with user interaction
are ignored by MotWrite. In this case mv_view_motions will always return 1 and the
parameters of a place-call will never be altered. Also checking for errors is less strict in
the MotWrite library.

There is one call in MotWrite that is not used in MotView:

• mv_set_file(char *filename)

This can be called to write the output to a file instead of to standard output. mv_set_file
implicitly does an mv_remove_all, so layers that are used in different files should be
defined anew. Remember that motion file names normally end in `.mot'.

Because MotWrite needs a separate creation and viewing step and has less functionality,
one will normally link with the MotView library. On the other hand the MotWrite library
can be used on computers without special graphic capabilities, not just on SGI machines.
The size of executables is a lot smaller when programs are linked with MotWrite.

lnote that the MotView library and the MotView program are two separate things.

22

Chapter 5

The Viewing Program

Apart from the two libraries, there is also a viewing program with the name MotView.
This program can be used to view motion files that were created with the MotWrite library
or saved by a user of the Mot View library.

To view a specific file type `motview filename'. One can name more than one filename
on the .command line. If standard input should be read, a dash should. be typed instead
of a filename.

The user interface that appears is almost the same as that of the Mot View library. The
only difference has to do with loading and saving motion files. The 'Save' button in the
main form is replaced by a 'Load' button. If the user presses this button a file browser is
presented. The file that is selected is read and the motions that are contained therein can
be viewed. Those motions replace the old motions. If one wants to load several motion
files in the viewer this can only be done by specifying more than one file on the command
line.

23

3)t

Chapter 6

Future Developments

As long as software is used, there will be a need for change, so hopefully MotView will be
extended in the future. Although it is easy to predict that there will be changes, it is harder
to foresee what those changes will be. For example, this version of MotView is smaller
than the previous one: some functionality has been left out to concentrate on making this
a good package for viewing motions, not a mediocre one for animating algorithms.

Some adaptions that are considered are:

• Allow more shapes besides points, line segments and polygons. Especially circles
and arcs might be handy in some cases.

• Take away the restriction of chainlike robots. Also allow for treelike structures.

• Allow more kinds of joints than revolute and prismatic.

Finally it would be nice to have a tool like MotView for visualising motion in three
dimensions. Where the former changes are mere extensions to MotView, going from the
plane to three dimensions will probably be done in a separate program.

24

35.

Appendix A

Overview of Routines

The following sums up all types, constants and routines defined in motview.h.

const MV_NAMELENGTH = 14;

enum mv_constraints {MV_FIXED=0, MV_FREE=1};

typedef mv__layers_index mv_layer_t;

void mv_set_autospeed(double);

mv_layer_t mv_define(const pl_geolist &obstacle, int real_object,

int col, int height, const char *name);

mv_layer_t mv_define(const pl_robot &robot, int real_object,

int col, int height, const char *name);

void mv_bind_phantom(mv_layer_t phantom_id, mv_layer_t robot_id);

void mv_remove(mv_layer_t layerid);

void mv_remove_all();

void mv_start_motion();

void mv_abs_move(mv_layer_t, const pl_configuration &, double time=-1);

void mv_sync2(mv_layer_t id1, mv_layer_t id2);

void mv_sync_all();

void mv_end_motion();

int mv_view_motions(int wait);

void mv_hide();

void mv_place_robot(mv_layer_t, pl_configuration &, const char *msg = 0);

void mv_place_robot(mv_layer_t, pl_configuration &,

pl_configuration &constraints, const char *msg = 0);

pl_configuration mv_all_free(int jointcount);

pl_configuration mv_all_fixed(int jointcount);

pl_configuration mv_joints_fixed(int jointcount);

25

pl_configuration mv_joints_free(int jointcount);

void mv_set_file(const char *);

26

